
Computing the Value of Spatio-Temporal Data in

Wholesale and Retail Data Marketplaces

Santiago Andres Azcoitiaa, Marius Paraschivb, Nikolaos Laoutarisb

aIMDEA Networks Institute, Univ. Carlos III, Leganes (Madrid) Spain
bIMDEA Networks Institute, Leganes (Madrid) Spain

Abstract

Spatio-temporal information is increasingly used for driving a plethora of
intelligent transportation, smart-city, and crowd-sensing applications. At
the same time, different types of data marketplaces are proposed for de-
siloing and monetising individual and enterprise data. In this paper we study
the problem of estimating the relative value of spatio-temporal data sold in
wholesale and retail data marketplaces for the purpose of forecasting future
demand in a certain area, e.g.a city. Using as case studies large datasets of
taxi rides from Chicago and New York, we ask questions such as “When does
it make sense for different taxi companies to combine their data?” and “How
should different companies be compensated for the data that they share?”.
We then turn our attention to the even harder problem of establishing the
value of the data brought to retail marketplaces by individual drivers. Over-
all, we show that simplistic approaches, such as assuming that the value of
the data held by companies or drivers is proportional to its volume are in-
accurate, because they fail to consider the complex complementarities that
may exist among different datasets. To remedy this, more complex notions
of value-sharing from economics and game-theory, such as the Shapley value
need to be used to capture the effect of mixing datasets on the accuracy
of forecasting algorithms driven by them. Applying the Shapley value to
large datasets from many sources is computationally challenging. We use
structured sampling to overcome such scalability challenges and manage to
compute accurately the importance of different data sources, even when their
number ranges in the thousands, as in the case of all the taxi drivers in a
large metropolis.

Keywords: Data value, Shapley value, data marketplace, personal
information management systems (PIMS), intelligent transportation
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1. Introduction

Data-driven decision making is bringing significant improvements to many
sectors of the economy, including in applications related to ubiquitous com-
puting in the areas of transportation, mobility, and crowd-sensing. A solid
body of research has studied matters of route optimization and infrastruc-
ture planning in a city [23, 27, 9, 24, 25], whereas companies like Uber are
increasingly deploying and operating sophisticated systems for optimising
their operations using live data.1 In the above and many other settings, data
are considered as important corporate assets, next to more traditional ones,
such as labour force, capital, and infrastructure. Therefore, it is becoming
imperative to be able to measure the value of data, especially when they get
combined from multiple sources.

The focus of this paper is on establishing the relative value of different
spatio-temporal datasets for forecasting future demand for a service across
space and time in a wide area, such as a city, or a metropolitan region. Com-
panies already offering service in overlapping areas can, for example, pool
together their data to increase the accuracy of forecasting and its coverage.
Improved forecasting can be used by the same companies to improve oper-
ations, such as dispatching vehicles, or provisioning service points. It can
also be sold as a service to third parties that do not own such data but
need it for important business decisions.2 To fulfill such needs, several data
marketplaces have appeared, making available for purchase both wholesale
enterprise (see IOTA3 or Airbloc4) and retail data produced and held by
individuals (see Digi.me, MyDex, HAT, EarnieApp, Citizen.me, Meeco or
OwnYourInfo 5 for some examples of so called Personal Information Man-

1Examples of how Uber leverages spatio-temporal data across its main processes and
operations https://eng.uber.com/forecasting-introduction/ (last accessed Febru-
ary 2020).

2Such commercial services are already offered by several telcos, banks, and other en-
terprises, see for example: www.business-solutions.telefonica.com/en/products/

big-data/business-insights/smart-steps/
3See https://data.iota.org/
4See https://airbloc.org/
5See https://digi.me/, https://mydex.org/, https://www.hubofallthings.com/,

https://ernieapp.com/, https://www.meeco.me/ or http://www.ownyourinfo.com/,
last accessed Jan 2020.
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agement Systems (PIMS)).
For the purpose of our work, we concentrate on vehicle-for-hire demand

prediction in Chicago and New York. While our examples and findings are
specific to this particular urban mobility use case, the methods that we de-
velop for assigning value to spatio-temporal datasets held by (taxi) compa-
nies and individuals (drivers) are more general in scope, and can thus be used
in other use cases beyond transportation, such as tourism, health services,
entertainment, energy or telecommunications. Coming back to our own set-
ting, we develop data valuation methods to answer a series of fundamental
questions pertaining to both wholesale and retail data fusion. For example,
“Does combining multiple datasets of past taxi rides always benefit the fore-
casting accuracy of future demand?”. Also, when it does, “How should we
attribute the improved forecasting precision to the individual datasets used
to produce it?”. Finally, we look at the interplay between fairness and scal-
ability/practicality and ask “Can the value of a spatio-temporal dataset be
approximated by its volume alone?”.

To answer the above questions, we use the Shapley value [22] from col-
laborative game theory as a baseline metric for establishing the importance
of individual players (be they taxi companies or individual drivers) in the
context of a coalition of data providers. The Shapley value has many salient
fairness properties and wide market adoption, but at the same time entails
serious combinatorial complexity challenges since its direct computation in a
coalition of size N requires enumerating and calculating the value of O(2N)
sub-coalitions. This may be possible for few tenths of companies, but be-
comes impossible when considering hundreds or thousands of drivers.

A much simpler way to compensate data providers is based on the volume
of data, in our case, taxi rides, that they report. While certainly more
practical, the latter assumes that any reported ride from the past has equal
value for predicting rides of the future. The latter is clearly not the case. For
example, in the context of a single data source, a reported ride that helps
in completing the picture regarding the multiple periodicity existing in the
demand is more useful for a forecasting algorithm than a “one-off” ride that
does not relate with any phenomena that are amenable to prediction. Things
become even more complex when considering data from multiple sources. In
this case, the value of a data point cannot be judged only with respect to
other data points from the same datasets but, instead, has to be considered in
the broader context given by the complementarities existing among different
datasets. For example, a taxi driver or a company that reports high demand
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for time periods and locations that are already known to be of high demand
has less value for prediction than reports of high demand concerning locations
and periods that are not covered by the datasets brought by other sources.

Our contributions: We describe how to apply and adapt the notion of the
Shapley value to the problem of establishing the value of different spatio-
temporal datasets used in forecasting for-hire transportation demand in a
city. The above requires addressing interpretability challenges about what
the Shapley value means in that setting, as well as scalability challenges aris-
ing when having large numbers of data sources. To the best of our knowl-
edge, ours is the first work using rigorous notions of fairness from economics
and game theory to data valuation challenges in the important area of data-
driven transportation. We first study wholesale data fusion at the granularity
of entire companies. Since the number of such companies covering the same
geographical area is typically small, the value of their data can be computed
directly from the definition of what the Shapley value is. This, however,
becomes infeasible at the level of individual taxi drivers, since the latter
may amount to several thousands for large metropolitan areas. To address
this issue, we compare different approximation techniques, and conclude that
structured sampling [10] performs much better than other approaches such
as Monte Carlo [19, 11] and random sampling.

By applying our model and valuation algorithms to taxi ride data from
Chicago and New York, we find that sufficiently large taxi companies hold
enough data to independently predict the overall demand, at city-level, or
in large districts, with over 96% accuracy. This effectively means that inter-
company collaboration does not make much sense in this case. On the other
hand, when the objective is to predict the demand at a finer – district-level
– granularity, then there are plenty of districts in which companies have to
combine their data in order to achieve a sufficient forecasting accuracy. Com-
puting the relative value of different contributions in such cases, we find that
there exist companies whose data value differs by several orders of magni-
tude. Also the importance of the data of a given company can vary as much
as ×10 from one district to another. More interesting, the importance of a
company’s data does not necessarily correlate with the amount of data that
that the company brings to the collaboration, i.e., there are companies that
report relatively few rides but have a larger impact on forecasting accuracy
than companies that report many more rides. Similar phenomena are ob-
served at the finer level of individual drivers. We show that combining data
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from relatively few drivers one can easily detect the hours of peak demand
at the city level. At district level, however, more data needs to be combined,
and this required making use of our fastest approximations of Shapley value
based on structured sampling.

2. Problem Description

In all the data marketplaces mentioned before, deciding a price for a
dataset is left to the two trading partners to negotiate. The data seller can
set a fixed price, or the data buyer can make a bid that the data seller accepts
or rejects [17]. The problem we study in this paper differs substantially from
such bilateral negotiations. What we will study is how to assess the relative
importance of multiple data sources when they combine their data. The
resulting aggregate dataset can be used by the same (federated) data sources
or can be sold to third parties. In both cases, federation is creating a surplus
that can be monetary (when the data is eventually sold) or be had “in kind”
(when the data is used by the federated data sources to improve the quality
of their forecasts). In both cases there is a need to compute the relative
importance of each source to the achieved collective performance.

Next we introduce some notation that will be used in the rest of the paper.
Let S denote a dataset and its utility (or value) to a predictive algorithm be
v(S). The notion of value is to be interpreted as the ability of an algorithm to
produce accurate predictions, when trained on the respective dataset. Thus,
our notion of data value is linked to an algorithm’s estimation accuracy. Data
may be provided by different sources. We denote the set of such data sources
by N = {n1, n2, ..., n|N |}.

Consider such a set of data sources, each one reporting a series of past
demand observations (x, t), where x is the spatial coordinate of the demand
point (for example its latitude and longitude, or the corresponding district
in a city) and t is the time at which the demand took place. As such, the
data is in the form of a time series or signal y(t) in an observation period
To, to which we shall sometimes refer to as a demand function. As the name
suggests, yN(t) represents the aggregate demand function for all data points
reported by the entire set of providers N .

This aggregate signal is then used to train a forecasting model, a multi
seasonal SARIMA in our case, whose output is a time-series ŷ(t) in a control
period Tc, representing the model’s future total demand prediction. For every
use case, this value will remain fixed, it is computed once and used as the
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ground truth when estimating the value of data coming from subsets of the
set of data providers.

To give our value function a mathematical expression, we define the value
of the data coming from a subset K ⊆ N of data providers, say SK , as the
cosine similarity between the predicted signal, and the reference aggregate,

v(SK) = CosSimilarity(yN(t), ŷK(t)), (1)

where ŷK(t) is the prediction that the model returns, if trained only
on the data set SK . Defined in this manner, the value function expresses
how accurately predictions resulting from a data set can reproduce the total
reference aggregate, over a certain control period, Tc used for this purpose.
The cosine similarity has been chosen among other similarity metrics because
we are mostly interested to predict the “shape” of future demand as opposed
to its exact magnitude. Having the shapes allows us to identify busy and less
busy hours and districts (when the forecasting is repeated at district level).
From the shape one can easily extrapolate the actual demand in terms of
passengers by scaling up by a factor proportional to the number of taxis
used in producing the prediction vs. the total number of taxis in the city.
The latter is usually public information in most cities. Figure 1 shows a
block diagram that describes the general prediction model used throughout
the paper.

Different groups or coalitions of providers may achieve different prediction
accuracies than others. Given that the value of a coalition of data providers
is measured by its forecast accuracy, how should we attribute this accuracy
to each one of the data providers? In other words, if we were to pay each
individual provider for its training data, how should we compute the resulting
payment in a fair manner?

One might initially think to pay data providers based on the volume of
data they report. This, however is, as we shall see, not necessarily a good
value estimate. Some factors affecting the capacity of data to bring a positive
contribution to the estimation of the total demand aggregate are: spatial and
temporal coverage, as data from a provider which is only active in certain
locations cannot offer information regarding the demand in the rest of the
city; redundancy, there can be a degree of overlap between the data given by
one company and another; complementarity, a service provider might only
be active at night, or during the weekend and consequently might not be
able to infer the demand for the entire week by itself. However, combined
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Figure 1: Block diagram describing the general prediction model used throughout the
paper. The model constructs the aggregate input (or training) demand yK(t) from a set
of sources K ⊆ N by combining their individual demands yi(t) during an observation (or
training) period To. This input then drives a prediction model, which in our case is a multi-
seasonal SARIMA algorithm with daily and weekly sub-components. The parameters
(p, d, q)x(p, d, q)s for such a predictor are obtained via grid search analysis to minimize
the AIC (Akaike Information Criterion, [2]). As a result, the prediction model produces a
forecast ŷK(t) in the control period Tc which is compared to the real demand as described
in Eq. 1.

with the data from another, active during the day or the working part of
the week, the aggregate may indeed prove valuable. In the coming sections
we demonstrate all of the above using real data, and propose a method for
taking into consideration all complex complimentarities that may appear
when mixing data from multiple sources.

3. Computing the importance of data in wholesale collaborations

We start with the case that different companies pool together their data
in order to improve the forecasting accuracy for their own use, or for selling
the resulting aggregate dataset to external data buyers. In both cases it is
relevant to know how important the data contribution of each data source
is.

3.1. Description of setting and assumptions

For the purpose of this use case, we will focus on metropolitan vehicle-
for-hire markets and we will assume that i) service demand observations will
be taxi rides reported in a certain spatial coordinates at a certain time, and
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Table 1: Chicago City taxi rides dataset (retrieved during Nov’19). Brief description
and statistics for the whole data set and for the specific period which was used in the
simulations.

Time period 01-01-2013 - 09-01-2019 01-01-2019 - 09-01-2019
Rides 94 millions 11.1 millions
Companies 160 with 101 individual li-

censes
58. 94% rides from top 15
companies

Districts 77 districts (administrative communities) of Chicago City
Taxi Ids 19,014. 55% of the total li-

censes associated to 5 com-
panies

6,469

ii) data sources will be the databases of taxi companies that contain a log of
such taxi rides. Our objective will be to forecast the aggregated demand in
a control period taking as an input the demand reported in an observation
period. Increasing the accuracy of such a prediction model is important both
for operational needs ( e.g., knowing where to dispatch drivers in anticipation
of demand) and planning issues ( e.g., deciding where to place taxi service
points), so as it would make sense for a company to collaborate in case its
prediction accuracy could be significantly improved by pooling similar data
with other companies.

In order to compute results for a real scenario, we will make use of a
public dataset of taxi rides from the city of Chicago, 6 which is a log of taxi
rides that licensed companies report to local regulatory bodies. This dataset
consists of more than 94 million rides from 160 companies, spanning from
2013 to 2019. We will filter data for the first half of 2019 for the analysis (see
Table 1 for a summary of the properties of this dataset). We will consider
the demand for the main 15 taxi companies in that city, plus an additional
hypothetical 16th company, where we aggregate the information from the
rest of companies, which account for less than 5% of the total demand. In
section 5 we will also present the results for a similar data set from New York
City.

We will start our analysis by first checking the cases that make collabora-
tion between companies meaningful. For those cases, we will then compute

6see https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew,
last accessed January 2020)
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Figure 2: Example plot of a city-wide SARIMA model fit using the information from all
companies and only from company labelled as C0

a fair measure of the importance of each individual company based on the
quality of the data it offers. We will look at those two matters at both city
level, as well as independently for each of the 77 different administrative
areas (hereinafter, districts) in which Chicago is divided.

3.2. Demand forecasting at city level

Figure 2 shows a prediction sample for a control period between Apr 15th
and Apr 28th 2019 based on the observations of the previous weeks. It com-
pares the real observed demand to the predicted demand using information
from all companies and only from the company labelled as C0. Similar plots
are obtained for the rest of the companies. Table 2 shows a summary of
the forecast accuracy achieved by using all the information available and by
using only the information from each company. According to our results, the
demand prediction that each company is able to produce on its own yields, in
general, an accuracy above 96% at city level. This means that all companies
have enough data to independently predict the future demand with at most
a 4% maximum average error. Granted that all companies have sufficient
data to perform demand prediction accurately on their own, the incentives
for collaboration via pooling their data together are very small.

3.3. Demand forecasting at district level

We performed a similar analysis by isolating the rides of each of the 77
districts of Chicago. Estimating the future demand in this case becomes more
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Table 2: Accuracy metrics for example city-wide SARIMA model fit

Co Accuracy Co Accuracy
All 0.9833 C8 0.9797
C0 0.9686 C9 0.9861
C1 0.9835 C10 0.9829
C2 0.9794 C11 0.9659
C3 0.9737 C12 0.9845
C4 0.9801 C13 0.9725
C5 0.9736 C14 0.9767
C6 0.9800 C15 0.9724
C7 0.9804

challenging and, as we will show soon, often requires collaboration between
different companies.

Figure 3 (a) shows the relationship between the forecast accuracy and
the number of rides reported within a district. Not surprisingly, we see that
the accuracy is higher in districts with a higher number of reported rides.
District-level predictions are more susceptible to irregular local events than
city-wide predictions. For instance, despite being one of the districts with the
highest number of reported rides, district number 7 (Lincoln Park), appears
to be a (negative) outlier in terms of accuracy in Fig. 3 (a). While analysing
manually the dataset we found out that a large number of the reported rides
were due to a one time event – a James Bay concert at the Riviera Theater,
on March 19th. The resulting irregular spike that evening largely explains
why the forecasting accuracy remains lower than other districts with smaller
volume of demand but more regular pattern.

Another interesting case is district 33 (Near South Side), where the NFL
Stadium, McCormick Place and different Museums and city attractions are
located. Even though it is reporting a reasonably high number of rides (70k,
ranked the fifth district in the city in terms of number of rides), the model
is unable to produce a prediction of high accuracy (goes up to 66% accuracy
even with all the available information used). This is due to the event-
driven nature of demand in this area, which is not captured by the assumed
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Figure 3: Demand prediction at district level. (a) Relationship between the level of ac-
curacy achieved by district and the number of rides reported. Each point in the plot
represents a district. (b) Benefit of cooperation vs.number of companies willing to co-
operate in obtaining a better prediction for two different cooperation thresholds (20% or
10%) (c) Potential prediction accuracy improvement by cooperation at district level.
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SARIMA model.7

Out of the 77 districts, the prediction algorithm is able to achieve an
accuracy above 60% for 50 of them (those above the shaded region in subplot
(a) of Fig. 3). This means that even by aggregating all the information
available, the particular forecast algorithm we assume would not be able to
predict the future demand with sufficient accuracy for 27 districts.

In order to check if our findings at city level still hold at local level (partic-
ularly if every company is able to build their own accurate prediction model
relying only on their data), we run the model in each of these 50 districts for
all 16 companies. We compute for each one the benefit of cooperation as the
difference between the accuracy of demand prediction using all companies
and the average (across companies) prediction accuracy achieved by each of
them on their own. For our analysis, we will assume that a company would
be willing to cooperate if its prediction accuracy is improved by at least
a minimum cooperation threshold. Figure 3 (b) plots for each of those 50
districts the average benefit of cooperation (Y-axis) vs. the number of com-
panies willing to cooperate (X-axis), considering two different cooperation
thresholds : 10% and 20%.

Looking deeper within district data, we find that in all the districts of
Fig. 3 (b) there is always at least one company that is able to build a forecast
model on its own which is very close to the one built by using all the data
available. It is not necessarily always the same company across all districts,
neither always the biggest one. Also we see that in general, smaller com-
panies tend to benefit more from the cooperation. It is also worth noticing
that lowering the cooperation threshold leads to more companies willing to
cooperate and a lower average benefit of cooperation.

Having taken a first look at the benefits for different companies in differ-
ent districts, we turn our attention to those districts where inter-company
collaboration makes more sense. Figure 3 (c) depicts box-plots (over com-
panies) of the prediction accuracy improvement from collaboration (Y-axis)
in each district (X-axis). Districts are sorted in descending order with re-
spect to the total number of reported rides. We also include city-wide results
at the leftmost point of the plot. The plot shows clearly that in the most

7Areas like this may be amenable to a better prediction accuracy by more complex
models using more information but this goes outside the scope of this paper since our
focusing is on judging the importance of different datasets for a (reasonable) predictor as
opposed to designing the best predictor possible.

12



popular districts (meaning that they report a large number of rides) the
per-company benefits from collaboration are rather small as with city-wide
results. However, as we move to smaller districts, the benefits of collabora-
tion start increasing. It is at such areas where it makes sense for different taxi
companies to pool their data together in order to achieve a higher demand
forecast accuracy.

In summary, the plot shows that:

• there are 17 districts where most companies are able to provide accurate
estimations (i.e., above 80% of the accuracy achieved using all the
information) and, consequently where there are weak incentives for
companies to cooperate.

• In 26 districts (marked with an asterisk in box plot (c) of Fig. 3) the
average benefit of cooperation is at least 20%.

• In 33 districts the average benefit of cooperation is at least 10%

Focusing on the districts where collaboration makes most sense, we will
now show how to compute the importance of the data that each company
brings. We will do that via the notion of the Shapley that we will introduce
next.

3.4. Introducing the Shapley Value

Establishing the individual player contribution to a collaborative game
has long been a central problem of cooperative game theory. To this end,
Shapley proposed that a players value should be proportional to their average
marginal contribution to any coalition they may join [22].

Let N = {n1, n2, ..., n|N |} be a set of players and SN be the aggregate
data of N , with a value v(SN). The Shapley value is a uniquely determined
vector of the form (φ1(v), ..., φ|N |(v)), where the element representing player
ni is given by

φni
(v) =

1

|N |!
∑
π∈Π

[v(S(π,i))− v(S(π,i)\ni
)], (2)

where π is a permutation representing the arrival order of the elements in
set N , while S(π,ni) represents the set of players that have arrived into the
system before player ni.
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Unfortunately, the Shapley value has also been proven to be NP-hard for
many domains [5]. Since it takes into account all possible coalitions, for each
user, the number of terms scales with 2|N |, where |N | represents the number
of players, therefore it quickly becomes computationally infeasible.

In Ref. [19] the authors use Monte Carlo to approximate the Shapley
value for computing the cost contribution of individual households to the
peak hour traffic and costs of an Internet Service Provider (ISP). In that
case, Monte Carlo had been used as a technique for approximating Shapley.
Other recent works have presented approximation algorithms for Shapley for
specific problems of lower complexity [6, 26]. Here we have tested both Monte
Carlo and Truncated Monte Carlo methods, as well as Random Sampling
and various Structured Sampling techniques (see appendix Appendix A.3
for more information).

3.4.1. A Toy Example

Consider a group of taxi companies agreeing to pool together the spatio-
temporal data they have about demands for taxi rides in a city. One method
to determine the value of a company is to observe how well the company
is able to reconstruct the aggregate total, that is the data coming from all
companies, by solely using its own data. As such, the data of one single
company, or a group thereof, is used to train a predictive model, and the
reconstruction error, between the predicted signal and the actual aggregate
signal, is measured. This error, or rather its opposite, the reconstruction
accuracy, represents the value of the company (or coalition of companies).
Aggregation leads to a highly non-trivial behavior of the value function, as
defined above, and in the following, we will discuss a few particular cases in
more detail.

Let us consider a toy example, depicted in Fig. 4a. A large number of
companies combine their data, to produce a spatio-temporal signal (contin-
uous line), representing the total aggregate demand. For simplicity, the time
scale is that of a single day, split into day-time and night-time, and also all
signals are drawn as constant. Companies whose overall behavior is closer to
the average may be able to predict the complete aggregate signal by them-
selves, without a need to form coalitions with other companies. As such,
their value will be ranked high, by our algorithm. In the example, company
C1 is less valuable than C2, as the signal of C2 better emulates the total
aggregate.

In the same setting, we also discuss the problem of complementary, de-
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Figure 4: Data aggregation can influence its value in nontrivial ways. In figure (a) we have
two companies, C1 and C2, active during en entire day. As C2 has an average value closer
to the reference aggregate (which represents data coming from many other companies),
its data is better able to reconstruct the aggregate than C1’s data. In figure (b), the two
companies act at different hours, and neither will be able to reconstruct the complete
signal by itself, but by combining their data, they gain a significant advantage. In figure
(c), the combination of data from a company active during the entire day with that of one
only active during the night, will be detrimental to the task of predicting the complete
aggregate, as C2’s data will distort the true activity gap between day and night. Not all
data aggregations lead to added value.

picted in Fig. 4b. Company C1 is only offering its transport services during
the night, while company C2 is active solely during the day. Taken individ-
ually, the data of neither of these two is able to reconstruct the complete
aggregate, however, they gain tremendous value as a coalition. Indeed, by
combining their data, the resulting signal covers the entire time-span of the
aggregate.

Data aggregation, however, does not always lead to an increase in value.
Indeed, there are cases where adding a new provider to a coalition reduces
the total value. A simple example is presented in Fig. 4c, one company, C1

provides data spanning the entire day, and is also close to the total aggregate,
while the other, C2, only provides data during the night. By combining the
two data sets, the overall predictive accuracy will drop because the absence
of reports for day from C2 will make most estimators believe that the traffic
intensity gap between day and night is smaller than the real one.

The previous figure has shown through simple examples that depending
on the particular characteristics of different datasets, mixing can be beneficial
or not. In reality of course there are almost infinite ways in which different
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spatio-temporal data may mix and that is why one cannot disregard all this
complexity and substitute it with simplistic rules such as that the value of a
company’s data depends only on the number of the data points it provides
without regard about what these data points look like and how they mix
with the data points of others. The advantage of using the Shapley value is
that no such assumptions need to be made since the Shapley value considers
by default all the possible ways in which datasets may be mixed.

3.5. Computing the relative value of information at district level

For the 26 districts marked with an asterisk in Fig. 3 (b), taxi companies
would benefit from an increase in prediction accuracy by combining their
data. For each one of these districts we have computed the Shapley value of
each company in the district. To do that we used the value function from
Eq. 1, where the total aggregate is now the signal obtained by combining
the data of all companies active in that particular district, and the predicted
aggregate is the signal predicted by the SARIMA model, after being trained
on the data from a particular coalition. For all such coalitions, the Shapley
formula from Eq. 2 is applied.

Table 3 depicts the value assigned to each company by each one of these
methods for the first 6 districts. Figure 5 shows the relationship between
the number of rides and the Shapley value in our prediction at district level.
Each point in such plot represents a company in one of the 26 districts. The
Shapley value of a company in a district, represents the average marginal
contribution to the accuracy of the predictor built by the data of a coalition
of other companies for that district.

Observing Table 3 one may see that different taxi companies can have
within the same district Shapley values that differ by several orders of mag-
nitude. Also, the Shapley value of a given company may vary from district
to district by a factor of more than ×10 in some cases (see, for instance,
companies 1 and 13 in districts 15, 17 and 19). Some companies have neg-
ative Shapley values in certain districts, meaning that they are bringing on
average a negative contribution ( i.e., reduce the prediction accuracy) to the
coalitions they join.

From Fig. 5 we see that the Shapley values of companies do not correlate
well with their number of rides. In fact, the Shapley value for small companies
tends to be higher than their corresponding percentage of rides, whereas it
is the opposite for large companies. In other words, if we approximated the
importance of different companies just by the volume of data (rides) that
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Table 3: Shapley value and number of rides (%) for a sample of districts

13 15 17 19 23 25
Co SV Rides SV Rides SV Rides SV Rides SV Rides SV Rides
1 11.8 11.3 11.2 2.5 14.0 8.3 2.0 3.4 11.2 3.9 14.1 8.3
2 1.8 1.2 1.8 0.8 0.0 0.5 1.5 0.5 3.5 2.9 4.5 2.3
3 1.8 0.3 1.0 0.3 0.2 0.5 0.3 0.0 0.4 0.1 0.3 0.0
4 0.0 0.9 0.4 0.2 0.2 0.0 0.4 0.1 0.7 0.3 0.1 0.1
5 1.4 1.2 2.3 0.9 0.4 0.5 0.7 0.8 3.0 2.4 0.5 0.9
6 20.0 49.2 16.4 37.9 28.0 56.2 24.1 38.6 21.0 42.9 21.8 56.1
7 2.4 1.0 1.1 0.4 0.2 0.4 0.2 0.5 0.9 0.1 1.1 2.4
8 1.5 1.0 1.1 0.8 0.3 1.4 1.5 0.5 3.2 2.2 -0.3 1.0
9 2.8 0.3 -0.3 0.2 0.0 0.2 -0.6 0.3 0.3 0.2 1.8 0.4
10 2.1 3.2 2.3 1.4 0.2 0.8 0.9 0.7 1.0 2.0 3.3 2.3
11 1.2 0.8 0.6 0.3 0.2 0.5 1.4 0.5 0.6 0.3 0.4 0.4
12 9.4 3.2 4.4 1.9 0.4 0.9 2.4 1.9 0.3 0.9 2.8 0.8
13 2.3 1.9 17.9 18.1 0.3 1.3 4.3 1.3 4.9 1.6 0.1 1.0
14 17.7 24.1 16.7 34.0 17.2 27.6 26.4 50.4 20.2 39.9 21.8 23.3
15 -0.4 0.2 0.4 0.1 0.8 0.3 0.4 0.1 0.0 0.1 1.0 0.3
16 0.8 0.3 0.2 0.2 0.0 0.8 2.4 0.5 0.6 0.2 -0.1 0.4

they contribute, we would be rewarding large companies, at the expense of
smaller ones.

Later in section 4.5 we will address the calculation of payoff allocation
in the case of individual drivers, and propose a way to manage positive and
negative Shapley values to produce actual monetary payoffs.

3.6. Summary

Predicting demand at city level does not require collaboration between
different taxi companies since each one can independently estimate city-wide
demand. However, when attempting to estimate demand at district level,
different companies need to combine their data if they are to achieve a high
prediction accuracy. In this cases, the data volume of a company does not
reflect accurately its contribution to achieving a better forecast of future
demand as given by its corresponding Shapley value.

4. Computing the importance of data in retail markets

In the previous section we developed methods for estimating the value of
aggregate data held by taxi companies. In this section we will go a step fur-
ther, and develop methods for estimating the value of data held by individual
drivers. This will introduce additional challenges in terms of scalability of
computation, since the Shapley value will now have to be computed over
hundreds or thousands of drivers instead of few tenths of companies. Such
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Figure 5: Shapley value vs. percentage of rides reported by company for a sample of
districts. Each point represents a company in a district

a use case makes much sense since, in addition to market places for whole-
sale data such as IOTA or Airbloc, in the last few years we have also been
observing the emergence of several specialised market places for individuals’
data. Such marketplaces are often called Personal Information Management
Systems (PIMS) in Europe and, in addition to allowing people to adver-
tise and sell their data, they also offer other GDPR related functions such
as data portability, erasure, and anonymity functions, among others. See
Digi.me, MyDex, HAT, EarnieApp, Citizen.me, Meeco or OwnYourInfo for
some examples of such PIMS.

4.1. Selling spatio-temporal data through a PIMS

To conduct our study of estimating the value of information held by
individual drivers we will assume a simple model of a PIMS. The design
space for PIMS is of course huge, but it is beyond the point of this paper
to examine different alternatives. Hence in the rest of this section we will
assume that the PIMS operates as follows:

• Drivers upload to the PIMS their rides each day.

• Buyers request from the PIMS to train their forecasting algorithm for
spatio-temporal demand using data from real drivers.

• The PIMS uses a sufficient number of drivers’ data to reach an accuracy
threshold set by the customer.
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• Buyers pay the PIMS.

• The PIMS keeps a small percentage of the payment and returns the re-
maining part to the drivers whose data was used in training the buyer’s
forecasting algorithm.

We will assume again that the PIMS uses a multiseasonal SARIMA pre-
diction model as described in Sect. 2. To achieve the requested accuracy, the
PIMS starts with a random number of drivers, trains the algorithm, and com-
putes its accuracy over a test set. If the accuracy threshold is not reached,
then the PIMS selects an additional set of drivers until it gets to the desired
accuracy or fails to do so, in which case it informs the buyer that the request
cannot be met.

In the subsequent sections we will first show how to compute the relative
importance of each driver’s data involved in the computation, captured by
its Shapley value, and then how to transform it into an actual payoff for such
data.

4.2. Computing the Shapley value for individual drivers

Computing the Shapley value directly requires evaluating the value of
O(2|N |) coalitions which may be feasible for few tenths of taxi companies
but is clearly infeasible for hundreds or thousands of drivers in a city. For
example, to do computation for the importance of the data of each driver in
estimating the city wide taxi demand in Chicago we would need to consider
5000 drivers. Even in individual districts, if we were to consider the impor-
tance of each driver that has reported a ride we would still need to compute
the Shapley value from hundreds and for some large districts, thousands of
drivers.

To address the above scalability challenges we have implemented and
evaluated a number of faster algorithms for approximating Shapley values.
These include:

1. Truncated Monte Carlo approximation (TMC)

2. Random sampling (RS)

3. Structured sampling (SS), which plans the sampling upfront to ensure
that all players appear r times in each position of the r · |N | sampled
permutations of N.
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Figure 6: Approximate Shapley value vs. the number of rides across drivers

4. Truncated SS (TSS), which is a variant of SS that stops computing
sample permutations once the accuracy reaches a certain threshold (
e.g.95% of v(SN))

Having evaluated the above algorithms extensively (see details in ap-
pendix Appendix A) in terms of precision and robustness vs. computing
time, we have selected the TSS algorithm since it achieved the best trade-off
in all the datasets we tested.

4.3. City-wide results

We have computed a TSS Shapley value approximation for a set of |N | =
4968 taxi drivers that were providing service in Chicago during March and
April 2019. We sampled r = 8 different permutations for each driver and
applied a truncation threshold of 0.95. In this way we computed the con-
tribution of each driver’s data to the forecasting accuracy achieved by the
multiseasonal SARIMA model in predicting the demand in the second half
of April using taxi rides from the previous six weeks for training (To = Mar.
4th - Apr. 14th and Tc = Apr. 15th - 28th).

In the same way that we proceeded in the wholesale use case, we compared
the Shapley value with the number of rides reported by each driver. Figure 6
shows a plot of these two metrics across all drivers. We see that there is no
clear relationship between them. In fact, the linear correlation between both
values is very low (R2 = 0.1774).
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Figure 7: Probability of v(SK) exceeding 95% · v(SN ) vs the number of drivers in K

Another interesting finding is that it takes a very small number of drivers
to estimate the city-wide aggregate demand. With 7 randomly selected
drivers, on average, we can reconstruct the shape of the demand at city
level with a 95% accuracy.

4.4. District-level results

In the previous section we have shown that it is possible to build quite
accurate demand forecasts only by using a very small number of drivers at
city level. But what if someone, e.g.a customer of a PIMS as defined in
Sect. 4.1 requires to build accurate demand forecasts at the district level?

To address this challenge we will first quantify the number of drivers that
need to combine their data to get an accurate forecast of demand at district-
level, and then proceed to estimate the value of each individual driver’s data.
Figure 7 shows the probability that using a number of drivers indicated in
the x-axis one can achieve a prediction accuracy at least 95% of that achieved
when using information from all the drivers. Different lines correspond to
districts with high (28), medium (6 and 56) and small (11) demand for taxi
rides.

The plot show that whereas for forecasting city-wide demand, or demand
in large districts, few drivers suffice, forecasting the demand of medium-sized
and smaller districts requires information from many more drivers. This can
be understood by noting that in large districts, the aggregate demand is much
more predictable since it is the result of the aggregation of large numbers of
independent variables (people that may need a taxi ride). Such demands are
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Figure 8: Scatter plot of approximated φi vs n rides (%) for tuples of 20 drivers in district
28 which yield more than 0.95 · v(SN ) prediction accuracy.

known to be easier to forecast (see for example [16] in which the traffic of large
backbone network links is easier to predict than the traffic of smaller access
links). Achieving high forecasting accuracy in medium and small districts
requires using the data from tenths if not hundreds of drivers. Computing
the actual Shapley value is impractical for such numbers of players but it
can be approximated by using the structured sampling approach discussed
earlier in Sect. 4.2.

Nonetheless, we are able to compute the Shapley values for smaller sets of
drivers whose data achieve an accuracy very close to v(SN) when combined.
Figure 8 shows a scatter plot of the approximate Shapley value (Y-axis) vs.
percentage of reported rides (X-axis) for a number of such sets of drivers in
district 28. Each point represents a driver and drivers from the same set are
represented with the same marker. As observed earlier at city-level, the real
value of a driver may be very different from that implied by the number of
rides that he reports.

4.5. Translating Shapley values to actual payments

In the previous sections we analysed the relationship between a district
size and the number of drivers that need to pool together their data in order
to drive an accurate demand forecast at city and district level. Also, that
the Shapley values assigned to individual drivers may vary significantly and
that they cannot be approximated by using the number of rides that each
one reports. In this section, we return to the PIMS model described in the
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beginning of the section, and look at how we can produce actual monetary
compensations on top of the Shapley values of individual drivers.

As noted in the beginning of the section, in order to fulfil a request from
a customer, the PIMS selects random groups of drivers in batches of k until
it arrives to a sufficient number of batches b that can achieve the desired
forecasting accuracy demanded by the data buyer. Notice here that not all
the drivers in the required minimum set of batches need to be considered for
training the estimator of maximum accuracy. This may happen because some
drivers may add noise instead of helping the estimator to be more accurate,
as expected before in Sect.4.4. Therefore, out of the b · k drivers considered
in b batches, the PIMS will identify the subset that achieves the maximum
forecasting accuracy. Then payments can be assigned as follows:

• A fixed percentage of the overall payment will be kept by the PIMS for
offering its service.

• The remaining will be split among individual drivers. This will be split
into two parts:

1. The biggest amount will go to the subset of drivers whose data
is used in training the estimator of maximum accuracy out of the
b · k considered drivers. Payments will be made in proportion to
the Shapley value of each driver, neglecting those who deliver a
negative φi. Notice that a negative Shapley value means that in
spite of the fact that this driver’s data is required in achieving the
maximum accuracy among the b·k drivers, its average contribution
in subsets of the drivers is negative.

2. The remaining part will be split among all the users in the PIMS
in equal amounts. The latter is done because the data of users
not belonging to the b · k users is used in order to benchmark the
accuracy of the forecasting obtained via the data of the b ·k users,
and thus they should also be entitled to a compensation.

The above is only an indicative scheme for computing actual payments
from Shapley values. Coming up with the exact percentages paid to the
PIMS, the users whose data is used for training, and the remaining ones
whose data is used for bench-marking, involves several additional complica-
tions that go beyond our main task in the paper which is to validate the
relative importance of different datasets. The exact percentages should de-
pend on the prices asked (or offered) by data sellers (buyers), the market
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power of a particular PIMS and its competition with other PIMS, with the
size of the user-base of a PIMS (the smaller it is the highest the percentage
to return to users in order to retain them and attract new ones), and others.
We intend to study such matters as part of our future work with real users
and data.

5. Taxi demand prediction in NYC

We have repeated the analysis using this time a dataset of taxi rides in
New York City from Apr to May 2019 8. This dataset includes, for those
three months, more than 65 million rides from 33 companies in 261 districts.

The conclusions from NYC are similar to the ones we drew in detail for
Chicago. Particularly in the case of NYC, more than 80% of taxi companies
were able to predict demand with an accuracy of above 80% in 229 districts.
Cooperation was identified to improve by more than 10% the accuracy of in-
dividual predictions for more than 75% of the companies in 27 of the smallest
districts. We approximated Shapley values for those 27 districts for all com-
panies. Finally, the model was not able to produce reasonable results in 4
districts due to a very reduced demand. In the areas where cooperation be-
tween companies made sense, the number of rides reported by each company
was found again not to correlate well with the importance of the company
as given by its Shapley value, as was also the case in Chicago.

Similar conclusions were obtained when analysing the value of individual
drivers. Their Shapley value did not correlate well with the number of rides
reported by each driver (R2 ranging from 17% to 40%). In conclusion, repeat-
ing the analysis for a second large dataset verified all our main conclusions
obtained from the analysis based on the Chicago dataset.

6. Related Works

The use of spatio-temporal data in transportation and smart city appli-
cations has attracted much attention from the research community. Works
like [23, 27, 9] look at how knowledge extraction from spatio-temporal data
can improve the effectiveness of transportation [24] and delivery services
[25]. Despite, however, the large literature in the area, we are aware of only

8see https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page, last
accessed January 2020
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a single paper that studies data valuation matters around spatio-temporal
data [3]. The focus of the paper, however, is different from ours since it is
concerned with location-based advertising. Also, unlike our work, [3] uses ad
hoc notions of value instead of the widely accepted Shapley value used in our
work.

The research community is also actively working on matters of data mar-
ketplace design [1, 4] and pricing policies for data [17]. In parallel, many com-
mercial PIMS (like Digi.me, MyDex, HAT, EarnieApp, Citizen.me, Meeco or
OwnYourInfo) and data marketplaces (such as IOTA or Airbloc) are trying
to open-up and commercialise individual and enterprise data. The idea of
providing micropayments to users for their personal data has received a lot
of public attention after the publication of ”Who owns the future?” by Jaron
Lanier in 2013 [14]. More recent work describes fundamental technological
challenges that need to be addressed for the above vision to be fulfilled [15].
None of the above works has looked at valuation issues relating to spatio-
temporal data.

A last body of related work has to do with applications, and compu-
tational aspects of the Shapley value. [11] has used the Shapley value to
compute payments for providers of training data for different machine learn-
ing problems (not related to spatio-temporal demand prediction). Several
works have looked at computational aspects of Shapley value and for effi-
cient exact and approximation algorithms for particular types of problems
such as recommendation, graph centrality, and others [13, 11, 6, 18].

7. Conclusions and future work

In this work we have looked at the problem of how to compute the relative
importance of different spatio-temporal datasets that are combined in order
to improve the accuracy of future demand prediction for taxi rides in large
metropolitan areas such as Chicago and New York. Our main result has been
that the importance of each dataset cannot be deduced by just looking at
the number of data points it includes but instead one needs to look deeper
and consider the complex ways in which different dataset complement one
another.

We have used the notion of Shapley value from coalitional game theory
to compute the average marginal utility that a dataset is bringing when ap-
pended to a coalition of other datasets. This marginal utility is representing
the improved forecasting that a dataset can achieve by complementing an
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existing coalition of datasets (in our case past taxi rides). With the above
tool at hand, we have analysed the values held by entire taxi companies
aggregating data from all their drivers as well as by individual drivers that
could sold such data to new marketplaces appearing for such purposes. Com-
puting the Shapley value at the level of taxi companies can be done directly
using the definition of what the Shapley value is. For individual drivers,
however, we had to resort to structured sampling to approximate its value,
since computing it exactly would be computationally infeasible.

As part of our future work we are looking at various related topics. First,
how to design an actual marketplace for such data and how to compute actual
prices and percentages paid to the platform and to the data providers in order
to entice as many data providers and data buyers to use the platform. Such
pricing problems are orthogonal to the relative importance of datasets studied
in this paper but would benefit by having this information as a starting point
for price setting and negotiation. Secondly, we are looking at value sharing in
the context of more complex metrics than just the spatio-temporal footprint
of demand. Such metrics include full origin-destination traffic matrices as
well as congestion in road networks. Last, we are working on developing
approximation algorithm for computing the Shapley value in spatio-temporal
and other settings.
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Appendix A. Testing Shapley Value Approximation Algorithms

The aim of this appendix is to introduce the algorithms that were ana-
lyzed and evaluated to select the most suitable approximation to the Shapley
value. Since an exact calculation of the Shapley value requires an O(2|N |)
algorithm, the performance of the approximation algorithms to be used is
critical. Having evaluated different candidate algorithms extensively, we have
selected a structured sampling algorithm for it provides the best trade-off be-
tween accuracy and time, on all the datasets we have tested. Even though it
is tailored to the behaviour of the value function defined for this specific prob-
lem, it will outperform naive methods in any problem where the marginal
contribution of a player to a coalition strongly depends on its order of arrival.

Appendix A.1. Explaining the evaluation testbed

We computed the exact Shapley value for the daily prediction model,
using a wholesale setting as described in section 3.1, in order to test the
accuracy of the prediction algorithms, both at city level and in a medium-size
district (particularly district 35). The following approximation algorithms
were evaluated:

1. Monte Carlo (hereinafter, MC) approximation as stated in [11] evalu-
ates the marginal contribution to coalitions extracted from a random
sample of permutations of N until a convergence condition is met. We
selected as such convergence condition a flag that controls whether
the maximum relative variation of approximated φi is below an input
threshold, which will range from 10% to 0.5%, before computing a new
permutation.

2. Random Sampling (hereinafter, RS) as stated in [7] using a different
number of r · |N | sample permutations, where r will range from r = 1
to r = |N |2.

3. Structured Sampling (hereinafter, SS), tailored to problems where the
position of a player in a coalition strongly determines their marginal
contribution, based on [10, 20]. SS ensures that all companies appear
r times in the first positions for a set of r · |N | permutations.

Given the stochastic nature of Shapley approximation algorithms, we
tested each one 50 times for each set of input parameters and obtained the
approximate Shapley value for the 16 companies. We compared the perfor-
mance of the aforementioned algorithms in terms of:
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• Accuracy, measured as the average average9 absolute error (hereinafter,
AAAE) and average average percentage error (hereinafter, AAPE) com-
pared to the exact Shapley Value by company.

• Robustness, measured as the average average10 standard deviation (here-
inafter, AASTDE) of the outputs of an algorithm and a certain set of
parameters.

• Time to execute (TtE), measured in terms of the number of training-
prediction cycles computed.

The convergence threshold in the case of MC and r in the case of RS and
SS allow one to define the sample depth and affect both to the execution
time and to the accuracy of the approximation.

In all cases, we tested non-truncated and truncated versions of the MC,
RS and SS algorithms (we will refer to them as truncated-XXX algorithms,
or in short-form TMC, TRS and TSS). Truncation of execution above a
certain truncation threshold (v(SN) − ε) works in the following way: while
evaluating a permutation π of set N , if it holds that for the coalition of the
first j players, πj ⊆ π, πj = {π[1], ..., π[j]}, v(πj) > v(SN) − ε, the rest of
members k ∈ π − πj are considered to bring a zero marginal contribution.
Truncation helps the algorithm reduce the time it takes to execute but also
decreases the accuracy of the approximation.

Appendix A.2. Explaining structured sampling (SS) algorithm

As regards to ”structured sampling” (SS) approximation to Shapley value,
the Algorithm 1 box provides a detailed description of the algorithm. Un-
like random sampling, it plans the sample permutations upfront so as to
ensure that each player i ∈ N appears r times in each position of the sam-
pled permutations. This reduces the randomness of the sampling process
and increases the performance especially when the marginal contribution of
a player i in a permutation π is significantly determined by its position.

We resort to Latin squares in the sample process. A Latin square LS of
order |N | is an |N | · |N | array with elements of a set N , in such a way that

9First average error across companies for each test, then average the average error
across all executions.

10First average standard deviation of the approximate Shapley value across all execu-
tions, then average the average standard deviation across companies.

31



Algorithm 1 Structured sampling approximation algorithm

1: inputs: y(t) train data for each —N— sources in the set N, accuracy
test procedure v, rounds of permutations to evaluate r and truncation
threshold ε

2: Initialize Shapley value vector φi = 0∀i ∈ N
3: Initialize the set of sample permutations P = ∅
4: Create a |N |x|N | Latin square - LS
5: Q← N
6: for all i ∈ {1...r} do
7: Q← shuffle(Q)
8: P ← set of |N | permutations of Q according to the order defined by

LS
9: end for

10: t← 0
11: for all πt ∈ P do
12: t← t+ 1
13: vj−1 ← 0
14: for all j ∈ {1...|N |} do
15: if vtj−1 <= v(SN)− ε then
16: vtj ← v(πtj)
17: else
18: vtj ← vtj−1

19: end if
20: φtπt[j] ←

t−1
t
· φt−1

πt[j] + 1
t
· (vtj − vtj−1)

21: end for
22: end for
23: outputs: Approximation to the Shapley value of each data source i:

φ1...φ|N |
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Figure A.9: Testing of Shapley value approximation algorithms for demand prediction
models at city level (—N—=16). (a) Accuracy (AAPE) vs.execution time. (b) robustness
vs.execution time

each element ni occurs precisely once in each row and column of the array
[12]. Latin squares have been extensively used in experiment planning [21].
As shown in the Algorithm 1 box, we shuffle the elements of a random
permutation Q of N according to the order defined by such Latin square to
produce r different sets of |N | permutations with the aforementioned prop-
erties.

The referenced shuffle algorithm is the modern version of the FisherYates
shuffle, designed for computer use by Richard Durstenfeld [8]. Such algorithm
runs in O(n) time and is proven to be a perfect shuffle, assuming a reasonably
good random number generator.

Appendix A.3. Evaluating Shapley value approximation algorithms

Fig. A.9 shows a comparison of MC, RS and IS in terms of accuracy and
robustness. In subplot (a) we depict the AAPE as a function of the number
of sub-coalitions evaluated, which determines execution time. Subplot (b)
shows the AASTD as a function of the execution time. Please note that
Y-axis is logarithmic in both subplots.

In all cases the more combinations are evaluated, the more accurate and,
especially, more robust the results are. Nonetheless, it is clearly shown in this
case that the SS outperforms both RS and MC, meaning that the planning
of the sample permutations delivers a consistent output across executions
which is also closer to the exact Shapley values.
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Figure A.10: Shapley value approximation algorithm testing for demand prediction models
for district 35 in Chicago and N=16 companies. (a) Accuracy (AAPE) vs.execution time.
(b) robustness vs.execution time.

Since city wide demand prediction considering data from companies is a
very special case 11, we ran the same test using the inputs of a medium-size
district, which is yielding very different Shapley values for each company, to
prove whether or not the previous conclusions hold, in a scenario where the
standard deviation of φi across companies is relevant. Figure A.10 shows the
results of this analysis.

As expected, the difference between SS and the naive versions of MC and
RS in terms of robustness and accuracy decreases in cases where φi values
are very different. MC takes more time to converge and both RS and SS
results show higher AAPE if compared with the first most favourable case.
However, the SS algorithm showed to clearly outperform both MC and RS
also in this situation.

In the light of the results obtained, we have selected SS as the best al-
gorithm, since it is able to to approximate the Shapley value with a 10%
average error in O(|N |2). This we consider sufficient for the purpose of a
value-based payoff distribution. In case finer accuracy is required, SS is able
to estimate the Shapley value with a 4% of error in O(|N |3).

11If we recall section 3.2, all companies have enough data to independently predict the
shape and average mean of the aggregate demand, with at most a 10% maximum average
error, meaning that the company that appears in the first place in the permutation is
bringing all the value. This might be a best case for SS.
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Figure A.11: accuracy and TtE of φi vs. truncation threshold in approximation algorithms.
In this case, SS and RS overlap in the (b) plot.

Appendix A.4. Evaluating the impact of truncation on accuracy

For computing the Shapley value for a large number —N— of players, and
given the specific behaviour of value in demand prediction problems, trun-
cation proves to be an important feature to speed up the execution without
necessarily distorting the output of the algorithm. In fact, if according to
section 4 by taking only a small percentage of all drivers we are able to quite
accurately predict demand in most cases, then why spend our valuable com-
puting time evaluating the marginal contributions of additional players once
our prediction has reached a 95% of the maximum accuracy?

We have computed approximations to Shapley value for the following
truncation thresholds: 0.6, 0.7, 0.8, 0.9, 0.95, 0.97, 0.98, 0.99 and 1. We have
run TMC, TRS and TSS in the same district as we did in section Appendix
A.3 for |N | = 16 companies, 50 times for each ε and using a convergence
threshold of 0.01 · v(SN) for TMC and r = 64 for TRS and TSS.

Figure A.11 shows the effect of truncation in both accuracy (a) and ex-
ecution time (b) for each of the three algorithms. According to our results,
SS is significantly more sensitive to truncation but by tuning r and ε it is
possible to control the trade-off between accuracy and execution time. We
chose to use a truncation threshold of 0.95 · v(SN) since it divides the overall
execution time by 16 while it only duplicates the percentage error.
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