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Chapter 07 

Blockchain of Things (BCoT): The Fusion of Blockchain and IoT 

Technologies 

Mahdi H. Miraz 

7.1 Introduction 

Both Blockchain and Internet of Things (IoT) are the two major disruptive 

emerging constituents of the contemporary internet-enabled era of 

technology. As per Gartner Hype Cycle of Emerging Technologies 2018 

(Panetta, 2018), both of these technologies are currently in their “peak of 

inflated expectations” while both are projected to highly likely require 

another “5 to 10 years” to mature. In fact, comparing with the Gartner’s 

2017 (Gartner, 2017) predictions, Blockchain - without changing much - 

hovered at its current ongoing position on the hype cycle. On the contrary, 

the locus of IoT has progressed reasonably – prevailing within the same 

arc (i.e. peak of inflated expectations) of the curve – moving downwards 

crossing the pinnacle – however, IoT pedalled back on the level of maturity 

from “2 to 5 years” to the current state of “5 to 10 years”. Such regression 

of IoT, in terms of reaching maturity level, however, is justified by its 

widespread adoption in multifaceted applications and the security concerns 

raised thus far. In fact, both of these technologies are distributed, 

autonomous and mostly decentralised systems possessing connatural 

potentials to act as complementary to each other.  IoT requires  

strengthening its security features while Blockchain inherently possesses 

them due to its extensive use of cryptographic mechanisms and Blockchain 

– in an inverted manner – needs contributions from the distributed nodes 

for its P2P (Peer-to-peer) consensus model while IoT rudimentarily 

embodies them within its architecture. This chapter, therefore, acutely 

dissects the viability, along with prospective challenges, of incorporating 

Blockchain with IoT technologies – inducing the notion of Blockchain of 

Things (BCoT) – as well as the benefits such consolidation can offer. 

 

7.1.1 Introduction to Blockchain 

https://link.springer.com/chapter/10.1007%2F978-981-13-8775-3_7
https://link.springer.com/chapter/10.1007%2F978-981-13-8775-3_7


The concept of Blockchain was first fully conceived as enabling 

technology for Bitcoin cryptosystem, as introduced in 2008 by a 

mysterious character called Satoshi Nakamoto (Nakamoto, 2008). 

However, expeditiously – within a very short span of time – Blockchain, 

for its wide possibility to be applied in multifaceted applications, has 

significantly proved its distinctiveness as a standalone technology. In fact, 

it can be argued that the Blockchain itself is not a new technology; it is 

rather a new concept of using different existing technologies in an 

incorporated approach (Miraz & Donald, Application of Blockchain in 

Booking and Registration Systems of Securities Exchanges, 16-17 August 

2018).  

 

Blockchain is a type of Distributed Ledger (Also known as Shared Ledger 

or Distributed Ledger Technology, DLT) – a shared database 

chronologically recording transactions – literally any sort and form of data 

– in a temper-proof digital ledger with time stamp. Blockchain ecosystem 

significantly utilises mathematical hashing and cryptographic asymmetric 

key encryption mechanisms for data security – along with P2P node based 

consensus approach for immutability. A brief operational description of 

Blockchain ecosystem has been presented at section 7.2. 

 

7.1.2 Introduction to IoT 



The phrase “The Internet of Things”, more commonly known as “IoT”, 

was first reportedly coined by one of the co-founders of MIT's Auto-ID 

Lab, namely “Kevin Ashton” far back in 1999. The term “Internet of 

Objects” is often used interchangeably. IoT ecosystem connects myriad of 

“things” or “objects” i.e. electronic or electrical devices- of different types, 

size, capabilities and characteristics- through the Internet. The principal 

aim is to maximise the benefits of data- in terms of practical usefulness as 

well as monetary gains by analysing and utilising in decision-making 

process - collected by various sensors and/or actuators embedded in 

different physical objects including machines. Major share of connectivity 

in any IoT ecosystem is mainly facilitated by a number of short-range 

wireless technologies such as: ZigBee, Radio Frequency Identification 

(RFID), Ultra-wideband (UWB) radio technology, sensor networks and 

through location-based technologies (Feki, Kawsar, Boussard, & 

Trappeniers, 2013). In fact, the latitude of such connections is continually 

extending beyond the scope of basic machine-to-machine (M2M) 

communication (Benattia & Ali, 2008). There are multifarious IoT devices 

available. Examples include: Smart toys, Wearables (e.g. Smart watches, 

glasses etc.), Smart appliances (such as Smart TVs, Smart speakers, smart 

Bulbs), Smart meters such as thermostats, Commercial security systems 

and smart city technologies (such as those used to monitor traffic and 

weather conditions). IoT applications are also multifarious in nature. Many 

IoT ecosystems, performing various different tasks, have been developed 

thus far. Examples of such IoT enabled systems include: Nest Smart Home, 

DHL’s IoT Tracking and Monitoring System, CISCO’s ‘Planetary Skin’ -  

a global "nervous system", Smart Grid and Intelligent Vehicles, Smart 

Firms, Smart Schools and so forth. In fact, the scope of IoT applications 

have always been expanding since it was first implemented. Figure 7.1 

demonstrates how various heterogeneous networks can be connected 

through IoT – a “network of networks” (Evans, The Internet of Things: 

How the Next Evolution of the Internet Is Changing Everything, 2011) 

making the Internet even pervasive. 

 



 
Fig. 7.1: IoT connecting ever expanding heterogeneous networks 

(Miraz M. H., Ali, Excell, & Picking, 2018) 

 

 

Apart from the wide range of standard networking protocols, domains 

and applications (Höller, et al., 10 Apr 2014) deployed in IoT 

ecosystems, IoT devices suffer from lack of standardisation, especially in 

terms of how they are connected to the Internet. However, this inhibiting 

factor is expected to be addressed in the near future.  

 

7.1.3 Application of Blockchain in IoT 

Blockchain and IoT – as standalone technologies – have already proved 

them to be highly disruptive. 

 



Since IoT highly utilises the existing wireless sensor network (wsn) 
technologies, intrinsically it remains vulnerable to privacy as well as 
security threats. On the contrary, blockchain, by its design and 
architecture- consensus method and cryptographic techniques – is 
considered as a Trust Machine (Panarello, Tapas, Merlino, Longo, & 
Puliafito, 2018). Thus, it possesses the potentials to address major 
share of the security issues found in IoT. Miraz (Miraz & Ali, 
Blockchain Enabled Enhanced IoT Ecosystem Security, 2018) argues 
them to be complementary technologies to each other: BC requires 
participating nodes for consensus approach which can be 
supplemented by IoT devices while IoT requires security features 
which can be met by BC such as transparency, privacy, immutability, 
operational resilience and so forth. 
  
IoT is a cyber-physical system which help represent the “connected” 
physical world into part of a substantial realm of information system 
– the cyber world. However, due to various reasons, the security 
aspects of IoT has not been properly addressed at the design phase 
of the devices and products. With the advent and increasing 
popularity of BC, there has been a paradigm shift in IoT research, 
particularly integrating IoT and BC (Samaniego & Deters, 2016; Sun, 
Yan, & Zhang, 2016)  together for a more robust but secure cyber 
world. However, since the technologies are still not fully mature, 
many challenges are yet to be addressed as emerged from such 
integration (Reyna, Martín, Chen, Soler, & Díaz, 2018). Many studies 
(Jesus, Chicarino, Albuquerque, & Rocha, 2018; Kouicem, 
Bouabdallah, & Lakhlef, 2018) suggest applications of BC as a 
probable solution to tightening the security aspects of IoT ecosystem 
including the presentation of “Stalker” (Jesus, Chicarino, 
Albuquerque, & Rocha, 2018) attack.  
 



Since IoT is built on the foundation laid by wireless sensor network 
(WSN) (Daia, Ramadan, & Fayek, 2018), characteristically each node 
of an IoT ecosystem is considered to be prone to attacks such as 
Distributed Denial-of-Service (DDoS) (Chaudhry, Saleem, Haskell-
Dowland, & Miraz, 2018; Onik, Al-Zaben, Hoo, & Kim, 2018) and if 
compromised may serve as a point of failure.  
IoT networks are mostly leveraged on cloud environment. Such 
centralised architecture suffers from Single Point of Failure (SPF) and 
further adds to vulnerability.  
 
IoT devices gather and/or generate vast amount of data which are 
communicated over the Internet for processing and decision making 
purposes. Data privacy and authentication is considered to be a 
constant critical threat for IoT environment. In the absence of proper 
security measures, these vast amount of data can be mishandled and 
used inappropriately (Sicari, Rizzardi, Cappiello, Miorandi, & Coen-
Porisini, 2017). It is thus extremely important to safeguard the IoT 
system from injection attacks. As the name implies, an injection 
attacks tries to inject false data or measures into the system and 
thus affect the overall decision making process. 

 

 

7.1.4 Challenges in integrating Blockchain in IoT. 



It is evident that the notion of Blockchain of Things (BCoT) – by creating 

a fusion of blockchain and IoT technologies, is capable of bring a 

paradigm shift in how these technologies are currently being used. Both 

the technologies can in fact benefit from each other in a reciprocal 

manner. However, integrating them together is not a straightforward 

matter. Many technological as well as architectural issues are yet to be 

solved for seamless integration. For instance, blockchain’s Proof-of-

Work (PoW) consensus approach may not be a good fit for IoT 

environment as it demands both computing power and electric energy to a 

great extent. Alternative approaches such as variants of Proof-of-Stake 

(PoS), Proof-of-Activity (PoA), Proof-of-Space/Capacity (PoC) are being 

designed, developed and implemented. Blockchain’s capped latency and 

lower transaction throughput is another hurdle in its way to be applied in 

IoT environment. However, recent invention of Lightning Network (LN) 

and similar other technologies hold great promises to address this issue. 

Per contra, IoT highly devices highly suffer from scarce processing 

capabilities and lack of storage systems. In addition to the recent 

advancement in IoT devices, off shoring some processing and storage 

related functions to the cloud mitigate the problem to some extent. These 

challenges and status of recent developments in this regard, have been 

discussed in section 7.4 in more details. 

 

7.2. Blockchain Fundamentals 

7.2.1 Distributed Digital Ledger  

In a blockchain ecosystem, there are mainly two types of nodes: full node 

and lightweight node. While the full nodes preserve the complete 

blockchain, lightweight nodes only download the headers of each block 

rather than the complete block. A lightweight node can also take part in 

the verification and consensus approach via connecting to a full node 

using simplified payment verification (SPV). Thus, downloading and 

storage requirement for a lightweight node is significantly reduced, 

however, this requires a lightweight node to place its “trust” on the 

associated full node instead. 

 



Therefore, all (full) nodes are intrinsically complete ledgers - they hold 

and have access to data the whole blockchain data containing the 

complete transaction history in the chain. As stated in section 1.1, 

blockchain is thus seemingly a Distributed Ledger (Also known as Shared 

Ledger or Distributed Ledger Technology, DLT) – a shared but temper-

proof digital ledger (database) of chronologically recorded time-stamped 

transactions or data. These transactions data, organised in blocks, are 

linked through the protocol along with hashing and consensus. Analogous 

to a ledger, an existing block cannot be deleted or modified as doing so 

will invalidate the “chain” of hashes.  Like other ledgers, a DLT is 

append only – allowing to add new blocks at the open end of the chain by 

any participating or permissioned node. The process is controlled by the 

protocol via consensus approach without the need for any central 

authority.  

 

One major advantage of this distributed approach is eliminating the single 

point of failure (SPF) as if one of the nodes becomes unavailable or 

compromised, the network shall still be functioning without any 

disruptions. Data are chronologically recorded in the ledger, thus it 

becomes easily verifiable. The decentralised approach, along with 

mathematical hashing provides immutability and transparency. DLT is 

also considered to be highly suitable for non-monetary transactions, 

especially for securities settlement. It is advocated that application of 

DLT can help bringing “direct” holding of securities and eliminate 

market fragmentation while bringing complete transparency in the 

settlement and clearing process (Donald & Miraz, 2019; Miraz & Donald, 

LApps: Technological, Legal and Market Potentials of Blockchain 

Lightning Network Applications, Forthcoming 2019).  

 

7.2.2 Variations of Blockchain 

Considering the permutation and combination of the read and write 

accesses assigned to the nodes, Blockchain ecosystems can be 

categorised into three different consensus models viz. public (permission 

less), private (permissioned) and hybrid (consortium).  

 

Public (Permissionless): 



In a public or permisionless blockchain ecosystem, anyone at any time and 

from anywhere in the world, having a computing device, can act as a 

participating node – joining and leaving the network at his or her own will. 

A node, willing to participate, has to install a small prototype which defines 

the consensus and other relevant rules. In most cases, all the nodes have 

both read and write access. However, nodes may opt out to be a “full node” 

– a node that keeps a copy of the “complete” ledger. Bitcoin’s Blockchain 

is an example of public Blockchain ecosystem. 

 

Private (Permissioned): 

In a private or permissioned blockchain ecosystem, only “permitted” or 

“invited” nodes can be part of the network. These trusted nodes usually 

have both read and write access. However, a role based policy or even 

specific node based approach can also be applied. Multichain is an 

example of private blockchain. 

  

Hybrid: 

A hybrid blockchain, as the name implies, is a combination of both public 

and private models. While read access is usually left open for any 

participating nodes as in public blockchain, write access is rather 

confined to some specific nodes. Consensus is predominantly controlled 

by a group of predefined “trusted” nodes. Hybrid Blockchain can be 

considered as the best version of both the models, however, 

implementation decision should be based on the domains as well as the 

type of the applications. For example, hybrid blockchain may be a good 

choice for stock exchanges while public blockchain for cryptocurrencies 

(Miraz & Donald, Application of Blockchain in Booking and Registration 

Systems of Securities Exchanges, 16-17 August 2018).  

 

Based on the history of evolution of this technology, Blockchain can 

further be categorised in four different versions thus far: 

 

Blockchain 1.0 

The type of blockchain behind Bitcoin cryptocurrency, as introduced by 

Shatoshi Nakamoto in 2008, is predominantly known as Blockchain 1.0. 

This sort of blockchain or DLT facilitates internet based financial 

transactions by enabling cryptocurrencies – the “Internet of Money”.  

 

Blockchain 2.0 



As a rule of thumb, blockchains supporting smart contracts are largely 

known as Blockchain 2.0. Analogous to contracts, smart contracts – as 

coined by Nick Szabo in 1994 (Szabo, 1997) - are programmable digital 

contracts enabled by turing complete language. In its simplest form, smart 

contracts are autonomous computer programmes that can automatically 

execute if the predefined set of rules or conditions are met. These rules may 

include validation, verification, facilitation, administration of the 

execution of a contract and so forth. Vending machine is the oldest known 

example of materialising smart contract. In Blockchain 2.0, the smart 

contracts reside in the chain or DLT and thus inherit the built-in securities 

features that a blockchain can offer. Therefore, Blockchain 2.0 based smart 

contracts, along with security, offer variability and transparency. Ethereum 

Blockchain is the leading smart contrast enabled blockchain ecosystem. 

 

 

Blockchain 3.0 

 

Blockchain 3.0 supports the operation of Decentralised Applications 

(DApp), eliminating Single Point of Failure (SPF)- as seen in traditional 

centralised applications. DApps adopt decentralisation both in storage 

and communication aspects, therefore, the backend code of DApps are 

mostly run on blockchain ecosystems – decentralised peer-to-peer 

networks, while traditional apps utilises centralised servers to serve this 

purpose. Ethereum Swarm is an example of decentralised storage 

infrastructure allowing frontend code of DApps to host and run. 

 

Blockchain 4.0 



Blockchain 4.0 – based on the foundations already laid by its preceding 

variants – enables utilisation of the advent of blockchain technology in 

various applications, solutions, approaches and business models, 

especially in the realm of “industry 4.0” (cyber-physical systems). The pre-

eminent driving force of Industry 4.0 is bringing complete automation in 

every phases of production systems (Onik, Miraz, & Kim, A Recruitment 

and Human Resource Management Technique Using Blockchain 

Technology for Industry 4.0, 2018). Such automation requires seamless 

integration of multifaceted execution systems as well as implementation of 

enterprise resource planning (ERP) – demanding highly reliable privacy 

protection and consensus model. This is where both IoT and blockchain 

kicks in – IoT providing the infrastructure for automation while blockchain 

acting as the “Trust Machine” [ (Miraz, Blockchain: Technology 

Fundamentals of the Trust Machine, 2017)]. Recent advent of atomic 

cross-chain swap and lighting network (Miraz & Donald, Atomic Cross-

chain Swaps: Development, Trajectory and Potential of Non-monetary 

Digital Token Swap Facilities, 2019), is likely to accelerate the whole 

automation process of Industry 4.0 by a degree of great extent as it will 

enable swapping of IoT generated  data on various Blockchain 4.0 

applications on different platforms.   

 

 

7.2.3 PoW vs PoS 

As per the blockchain architecture, it is obvious that consensus approach 

is required to verify and validate transaction and then assemble them in a 

block for chaining with the existing ledger. The final step is basically 

sealing a newly built block incorporating some or all from a pool of 

verified but unconfirmed transactions. This process involves calculating 

the hash of the block for making it immutable and verifiable in the future. 

To avoid “double spending” of the same coin, the process requires 

“someone” to have the authority to seal a block for addition at some 

given point of time. There are various algorithms, such as Proof-of-Work 

(PoS) and Proof-of-Stake (PoS) to determine this “someone” by the 

protocol, rather than any central administrator. 

 



PoW is the most commonly used algorithm, as ushered by Bitcoin. 

Bitcoin miners, who operate full bitcoin nodes, pull some transactions 

from the pool of unconfirmed transactions, add a new coinbase 

transaction to oneself to create a new coin as per the mining reward rate 

of that given time, add a nonce and then calculate the block hash. That 

being said, the hash has to solve the mathematical puzzle i.e. it has to 

smaller than a given threshold more commonly known as the “difficulty 

level”. If the first hash, calculated by a particular miner, do not satisfy the 

difficulty level threshold, the nonce is changed, usually by adding one to 

it, and repeatedly calculated until the satisfying solution is found – 

similar to a brute force approach. Whoever finds the solution first, 

amongst all the miners, is the winner and receives the newly created coin. 

Thus, analogous to gold mining, the process of completing the PoW is 

known as mining too. Once the satisfying has is found, it is broadcasted 

to the network, other nodes then verify it and if found to be legitimate, 

the block is then added to their existing chain and they start working on 

forming a new block by repeating the same procedure. It is possible that 

two different miners produce the valid hashes at the same or nearly same 

time. In that case, the “longest chain” rule shall be applied to avoid any 

fork. The difficulty level is also automatically adjusted by the Bitcoin 

protocol to keep it approximately 10 minutes on average. The overall 

PoW consensus approach as well as this capped latency thus contribute to 

high latency which is one of the major impediments of blockchain 

adoption. High demand for computing power as well as electricity is 

another major issue for which PoW and mining is highly critiqued. 

Considering the limited computing power of IoT devices, PoW is not a 

good fit for the fusion of blockchain and IoT technologies - Blockchain 

of Things (BCoT), where IoT devices act as participating nodes. 

 



Proof-of-Stake (PoS) is an alternative approach to PoW. In PoS, instead 

of solving cryptographic puzzle as part of mining competition, the 

amount of stake (wealth, cryptocurrency) a node possesses, incorporated 

with algorithms for randomisation, is considered while determining the 

creator of the next block. The more wealth/stake a node posses, the 

higher is the possibility for being selected as the creator of next block. 

While it is argued that PoS is more suitable, at least considering its 

currents state of development, for non-monetary applications of 

blockchain, DASH cryptocurrency has already adopted this approach and 

Ethereum has included in its future development roadmap. While PoS is 

considered to be less secure than PoW, it is more eco-friendly as it 

produces less Electronic Waste (E-Waste) and produces comparatively 

very less Green House Gas Emission (GHGE) by consumes less 

electricity (Miraz & Peter, Evaluation of Green Alternatives for 

Blockchain Proof-of-Work (PoW) Approach, 2019).  

 

There are now few other emerging approaches, as alternatives to PoW, 

such as Proof-of-Activity (PoA), Proof-of-Burn (PoB), Proof-of-

Capacity/Space (PoC) and Transactions as Proof of Stake (TaPoS). 

However, mostly all of these alternatives are prone to centralisation 

stands against the decentralisation notion of bitcoin i.e. to function as a 

“Trust Machine” through shifthing the trust to a decentralised network 

from the third-party intermediaries. 

 

7.2.4 Benefits of Blockchain 

Based on Blockchain’s architecture and functionalities, it is evident that 

blockchain offer the following benefits: 

Decentralisation: The first and foremost benefits of blockchain it operates 

in a distributed network and the ledger is replicated in all the participating 

nodes. Therefore, all other benefits of blockchain is mainly derived from 

its decentralisation nature. 

Transparency: Since transactions are recorded and timestamped in a 

decentralised ledger, blockchain transactions are completely transparent. 

Blockchain made verification of transaction further effortless through the 

application of Merkle Tree. Another important aspect of transparency is 

that the ledger can be precisely tracked back along the chain, 

authoritatively as well as accurately, to its point of origin. 



Security: Since the ledger is distributed, SPF is eliminated. Furthermore, 

consensus approach, such as PoW, and longest chain rule makes the 

blockchain network protected from DDoS by capturing 51% or more 

nodes. 

Immutability: Since all the time-stamped records of transactions are 

linked by mathematical hashing, altering one single transaction in the 

chain invalidates not only the hash of block it belongs to but also the 

hashes of all other blocks generated after that particular block. Per contra, 

replica of the chain is distributed on all the nodes of the network which 

provides verifiability – making the chain completely immutable. The 

ledger being append-only adds extra layer of immutability as existing 

record on the ledger can neither be deleted nor altered. 

Cost: For large scale applications, deploying blockchain could be well of 

legacy technologies and will need less maintenance – making blockchain 

an economical and affordable solution in the long run. On small-scale 

private application, it may be expensive to deploy blockchain as it 

requires a distributed network to operate. However, various Blockchain 

as a Service (BaaS), quite a lot of which are even cloud based, offered by 

many third-party platforms, such as Ethereum, Hyperledger etc., can be 

utilised for offshoring purposes. 

 

Smart Contracts: As discussed in section 7.2.1, smart contracts and 

Decentralised Applications (DApp) are now acting as a catalyst for 

blockchain adoption in various domains, including non-monetary ones. 

Smart contract enables pre-setting conditions on the blockchain. If the 

predefined condition or set of conditions are met, the blockchain system 

automatically triggers the transactions or materialise the contracts. 

 

Lightning Network: 

In a Lightning Network (LN), Hashed Timelock Contract 

(HTLC) based smart contract enables direct bi-directional transactions to 

take place between two parties. The intermediate transactions in LN 

network takes place in a second layer – built on top of the base layer of 

any blockchain ecosystem. These transactions are not subject to 

consensus, hence instantaneous. However, upon leaving the LN, the final 

resultant balance is broadcasted to the base layer network for consensus 

and settlement. Utilising onion-style routing, the scope of transactions in 

lighting networks can be expanded beyond directly connected peers. 

 



Micropayment: 

Drivers of Future Business Models: With the advent of smart contract and 

lightning network supported by blockchain, Lightning Applications 

(LApps) and truly affordable micropayment systems have emerged. 

These are now acting as drivers of future business models – by prompting 

innovation and nurturing new venture creations. 

 

 

7.3  IoT Fundamentals 

7.3.1 Internet of Everything, Things and Nano-things (IoE, IoT and 

IoNT) 

 

It has been observed that the terms Internet of Everything (IoE) and 

Internet of Things (IoT) are often inappropriately used 

interchangeably.  This is thus very important to distinguish between 

IoE and IoT. In fact, both Qualcomm and Cisco have been using the 

term IoE (Weissberger, 2014; Evans, 2012). However, while 

Qualcomm’s connotation of IoE has been overridden by IoT by a 

majority of others, Cisco’s interpretation is much more comprehensive. 

Cisco definitions of IoE comprises of “four pillars”: people, data, 

process and things, where “things” characterises IoT (Miraz M. H., Ali, 

Excell, & Rich, 2015), refer to the figure 7.2 below. 

 

With the advent of modern communication technologies, the detached, 

non-networked and solitary multifaceted devices of the past are now 

increasingly being connected through the Internet, including person-to 

person (P2P) systems, person-to-machine (P2M) and even machine-to-

machine (M2M) connectivity. The complete notion of IoE thus 

envelops people, processes, data and things together – in a close 

association, as shown in figure 7.2. Consequently, IoE innately 

supplements, enhances and broadens both industrial and business 

processes to enrich people’s lives. 

 

Further to the introduction of IoT in section 7.1.2, a conventional IoT 

ecosystem comprises of five distinct components – functioning in a 

way that involves mutual assistance in working towards a common 

goal. These components are as follows: 

(1) Sensors: The sensors mainly functions as “input devices” which 

collect as well as transduce the data they sense; 



(2) Computing Node: The computing node is mainly a processor – to 

further process the information and data received from a sensor; 

(3) Receiver: The role of the receivers involves collecting the message 

or data sent by the computing nodes or any other associated devices; 

(4) Actuator: The actuator is primarily responsible for triggering the 

associated device to perform the desired function as instructed by the 

computing node - based on its decision deduced by processing and 

analysing the data and information gathered from the sensors and/or 

the Internet; 

(5) Device: The devices “actually” perform the desired task(s) as and 

when triggered by the actuators. 
 
 

 
Fig. 7.2 Internet of Everything (IoE), Things and Nano-things (Miraz M. H., Ali, Excell, & 
Picking, 2018). 

 
The notion of Internet of Nano-things (IoNT) is fundamentally a genre of 
Internet of Things (IoT) – standard sensors being replaced by nano-sensors. 
IoNT embodies nano-sensors   in multifaceted objects with the advent of nano-
networks. IoNT possesses significant potentials to highly benefit healthcare 



sectors by enabling access to healthcare data from various in situ places of the 
human or animal body which were inaccessible in the past due to the 
comparatively “large” size of the sensors. In fact, in an IoNT ecosystem, the 
functional endeavours i.e. sensing or actuation is to be performed by a “nano-
machine” of dimensions ranging from one to 100 nanometre (nm), utilising 
nano-antennas operating at Terahertz frequencies. It is likely that IoNT is due 
to bring better medical diagnostics (Balasubramaniam & Kangasharju, 2013). 
Considering the potentials of IoNT in the healthcare sector, the nano-sensors in 
figure 7.2 has been placed inside the “people” box even though the nano-
sensors are mainly small-scale sensors. 

 

 

 

 
 

 

 

 

 

 

 

 



 

 

 

 

 

7.3.2 Challenges of IoT 

Due to architectural limitations, the major challenges of IoT includes 

sustainable source of energy, scarce processing capability and security. 

There are many other limitations of IoT which needs to be addressed 

are meticulously. Such challenges of IoT includes (but not limited to): 

deployment of IPv6, lack of standardization, pervasiveness of IoT 

applications as well as devices, retrofitting IoT devices with additional 

sensors, lack of scalability to meet multifaceted exponential growths, 

amalgamating with the software defined networks (SDN) paradigm, to 

meet the increasing demand for performance requirement of edge 

computing (fog), inherent limitations of current wireless sensor 

networks (WSNs), ethical and legal issues – especially those related to 

data ownership and data residency, identity management of connected 

devices while enabling automated discovery, meeting future database 

and data management stipulations (Miraz M. H., Ali, Excell, & 

Picking, 2018). In fact, it was difficult to predict the wide-spread 
adoption of IoT at the initial phase of development, therefore, not 
much attention has been given at the design phase of the devices. This 
ignorance has resulted in the huge challenges IoT is facing at this 
stage. 

 

7.3.3 IoT Security 

 
It is apparent that one of the primary challenges IoT has to overcome 
is the drawbacks associated with security, privacy and vulnerability 
aspects. IoT systems highly suffer from SPF vulnerability due to their 
cloud based centralised configuration. IoT also suffers from device 
authentication and data confidentiality. If proper security measures 
are not in place, IoT systems can be compromised and used 
inappropriately.  



It is pertinent to protect IoT systems from any attacks such as DDoS 

and injection attacks. While DDoS aims to disrupt regular legitimate 

traffic of a targeted network, server or service, injection attacks aims 

to disrupt decision-making by injecting false measures in the data. Both 

availability and data integrity is extremely important for any real-time 

and life critical applications such as healthcare, vehicular networks etc. 

Thus creating trust amongst IoT devices is extremely important and 

considered as a significant challenge. However, application of 

blockchain can significantly improve IoT security in this regard. 

Blockchain can offer IoT the required mechanism to achieve publicly 

verifiable audit trail through (device) authentication and (data) hashing 

techniques used blockchain ecosystems. This can thus help solving the 

problem of non-repudiation to a great extent. 

 

 

7.4       Application of Blockchain for Enhanced IoT Security 

 

The benefits BC can offer, such as security, transparency, 

immutability, verifiability as well as the smart contract and the LN 

based ones, possess the capability the limitations of IoT ecosystem if 

combined together with BC. Per contra, IoT also possesses the 

capability to benefit BC by actively participating at the consensus 

process. In the Blockchain of Things (BCoT)- the fusion of BC and IoT 

technologies- both can benefit from each other in a reciprocal manner. 

This section will present a detailed literature survey covering wide 

range of projects and research on the integration of BC and IoT i.e. the 

BCoT notion. 

 



In fact, due to the mushrooming popularity of both BC and IoT, many 

researchers around the globe are now trying to innovate different ways 

of BC-IoT integration for developing highly secure but robust 

Information Technology (IT) systems and addressing the technical as 

well as other associated problems. The works of Sun et al. (Sun, Yan, 

& Zhang, 2016), Samaniego & Deters (Samaniego & Deters, 2016) and 

Reyna et al. (Reyna, Martín, Chen, Soler, & Díaz, 2018; Atzori, Iera, 

& Morabito, 2010) are worth mentioning in this regard. Many studies 
(Jesus, Chicarino, Albuquerque, & Rocha, 2018; Kouicem, 
Bouabdallah, & Lakhlef, 2018) suggest applications of BC as a probable 
solution to tightening the security aspects of IoT ecosystem including 
the presentation of “Stalker” (Jesus, Chicarino, Albuquerque, & Rocha, 
2018) attack.  
 
Another research on studying the advantages and disadvantages of 
application of BC in IoT, by Christidis and Devetsikiotis (2016), 

introduces a taxonomy of BC topologies for this purpose. In fact, 

several divergent abstractions have been introduced with Proof-of-

Concept (PoC) prototypes. Examples of such PoC include: application 

of blockchain together with InterPlanetary File System (IPFS) for 

upgrading firmware of IoT devices by utilising smart contracts, 

framework for generating cash flow by facilitating resource (LO3 

Energy, 2017)or data (Protocol Labs, 2017) trading. 



The Filament1 research projects involve designing and developing a 

wireless network cable of controlling “any” system – ranging from 

street bulbs of a city to burglar alarm system of any office. That being 

said, the projects highly focus on the use of blockchain and smart 

contract to enable smart devices (such as sensors, smart refrigerator, 

smart TV or any other smart appliances) to interact with each other via 

seamless Machine-to-Machine (M2M) communications including 

discovering and exchanging messages – autonomously, without being 

controlled by any central authority. However, every any 

communication takes place, the devices have to authenticate 

themselves, by either Transport Layer Security (TLS) or Secure Socket 

Layer (SSL) protocols, for security purposes, could be using public key 

infrastructure (PKI). Another such M2M intercommunication model 

amongst smart IoT devices utilising blockchain as the backbone was 

proposed by Prabhu and Prabhu (2017).  In this proposed model, the IP 

addresses of the devices as a key for accessing information stored in a 

DLT or blockchain.  

 

With regard to access control, most of the established Access Control 

Lists (ACLs) and authentication approaches for traditional networks do 

not fit well in an IoT environment.  This is mainly because of the 

centralised nature of ACLs and similar approaches such as 

Discretionary Access Control (DAC), Mandatory Access Control 

(MAC) and Attribute-Based Access Control (ABAC). To address these 

problems, a model was proposed by Deters (2017), to perform access 

control in an IoT environment utilising the statistics extracted from the 

access patterns, along with blockchain and smart contract. 

 

                                                           
1 https://filament.com/ 



A multi-tier architecture of BCoT security and privacy model has been 

proposed by Dorri et al. (2016; 2017) eliminating the shortcomings of 

BC as well as other traditional approaches. Similar level of 

confidentiality and data integrity was achieved without the use of PoW. 

Their system is designed based on three different layers: smart home, 

overlay network and cloud storage. Apart from smart devices, the smart 

home also has a miner who governs the blockchain as well as the data 

access policies. When a new device (node) is added to the smart home 

ecosystem, the miner creates and adds a new block corresponding to 

the newly added node. In fact, the newly added block possesses dual-

header- i.e. block header containing a link to the preceding block while 

and policy header defines the data access rule and authority. For 

facilitating secure communicate amongst the devices shared keys are 

used – created and distributed utilising  Diffie–Hellman algorithm, 

governed by the miner. A smart device, in this system, can store the 

data either on local storage system by employing s shared key or on a 

cloud storage by sending a request to the miner will then trigger a 

transaction on the public blockchain – the transaction is signed with the 

device’s key and contains addresses of the cloud storage system. Thus 

the proposed BCoT architecture provides fivefold security and privacy 

related benefits: 1) confidentiality through use of shared private key 

encryption, 2) integrity through hashing, 3) availability by limiting 

allowed transactions, 4) user control by blockchain technology and 5) 

authorisation by applying authorisation policies along with utilising 

shared key. 

 

 

Wörner and Bomhard (2014) developed a BCoT system enabling 

network sensors to trade and exchange data for Bitcoins in a self-

governing fashion. Nodes’ addresses are same as public keys on 

Bitcoin network. Sensor nodes are discoverable via sensor repository. 

If a client would like to receive data from a sensor node, the client has 

to send transaction (including payment in Bitcoin) addressed to the 

public key of the corresponding sensor.  The sensor node will then send 

a response transaction (including data) to the public key of the client. 

The delivery of the data in such scenarios can be processed through 

smart contracts. An alternative approach of using Bitcoin or similar 

altcoins could be using IOTA – a cryptocurrency using no blocks and 

no miners while facilitating micropayments (IOTA Foundation, 2018). 



 

 

Chakraborty et al. (2018) has recently advocate a two-layered 

architecture to address the security as well as resource-constrained 

aspects of IoT nodes. The nodes having limited resource for enforcing 

security measures are clustered together in layer 0. Per contra,  other 

primary and secondary nodes are congregated in level N – while the 

primary nodes takes care of the relevant processing, the secondary 

nodes mainly assist the primary nodes in this regard. The resource 

limitations of the nodes in  layer 0 prevents them from communicating 

directly with other layer 0 devices, however, this rather achieved via 

level N devices instead.  
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