
Fairness and Efficiency in DAG-based Cryptocurrencies

Georgios Birmpas1, Elias Koutsoupias1, Philip Lazos2, and
Francisco J. Marmolejo-Cosśıo1

1 University of Oxford
2 Sapienza University of Rome

Abstract. Bitcoin is a decentralised digital currency that serves as an alternative to existing
transaction systems based on an external central authority for security. Although Bitcoin has
many desirable properties, one of its fundamental shortcomings is its inability to process trans-
actions at high rates. To address this challenge, many subsequent protocols either modify the
rules of block acceptance (longest chain rule) and reward, or alter the graphical structure of the
public ledger from a tree to a directed acyclic graph (DAG).
Motivated by these approaches, we introduce a new general framework that captures ledger
growth for a large class of DAG-based implementations. With this in hand, and by assuming
honest miner behaviour, we (experimentally) explore how different DAG-based protocols perform
in terms of fairness, i.e., if the block reward of a miner is proportional to their hash power, as
well as efficiency, i.e. what proportion of user transactions a ledger deems valid after a certain
length of time.
Our results demonstrate fundamental structural limits on how well DAG-based ledger protocols
cope with a high transaction load. More specifically, we show that even in a scenario where every
miner on the system is honest in terms of when they publish blocks, what they point to, and
what transactions each block contains, fairness and efficiency of the ledger can break down at
specific hash rates if miners have differing levels of connectivity to the P2P network sustaining
the protocol.

1 Introduction

Bitcoin and many other decentralised digital currencies maintain a public ledger via dis-
tributed consensus algorithms implemented using blockchain data structures. End users of
the currency post transactions to the P2P network sustaining the protocol and said transac-
tions are bundled into blocks by miners: agents tasked with the upkeep of the ledger. With
respect to Bitcoin, the prescribed longest chain rule dictates that miners must bundle pending
transactions into a block that also includes a single hash pointer to the end of the longest
chain seen by the miner in their local view of the ledger. Furthermore, in order for a block
to be valid, its hash must lie below a dynamically adjusted threshold. Hence, miners must
expend computational resources to find valid blocks. Due to this Proof-of-Work structure,
if all miners follow the protocol, the number of blocks they contribute to the blockchain is
proportional to the computational resources they dedicate to the protocol, i.e. their hash
power. In addition, miners are incentivised to follow the protocol via judicious incentive engi-
neering through block rewards. This latter point also implies that miners earn block reward
proportional to their hash power, thus making Bitcoin a fair protocol for miners.

As mentioned before, Bitcoin dynamically adjusts its target hash for valid blocks so that
the totality of all miners active in the protocol find a block every ten minutes on average. This
feature of the protocol makes consensus more robust, as this time-scale is much larger than
the time it takes for a block to propagate on the P2P network supporting Bitcoin. However,
since the size of blocks is limited, Bitcoin inherently suffers from a scalability problem. Thus

ar
X

iv
:1

91
0.

02
05

9v
1

 [
cs

.C
R

]
 4

 O
ct

 2
01

9

in spite of Bitcoin being strategy-proof and fair, it suffers in its efficiency: which we define
as the expected ratio of the number of valid transactions in the ledger to the number of all
transactions posted in the P2P network. On the other hand, simply decreasing confirmation
times and demanding higher transaction throughput by either increasing the overall block
creation rate or block size can also affect these very properties of the protocol. For instance,
delays in the P2P network may cause miners to have different views of the ledger, which can
in turn directly make achieving a consensus more difficult, or lead miners to be strategic when
they would have otherwise acted honestly. Ultimately, it seems that Bitcoin fundamentally
strikes a delicate balance between being strategy-proof and fair at the cost of efficiency.

There have been many attempts to cope with Bitcoin’s inherent throughput limitations,
with [16, 22–24] being some notable examples. All of these papers focus on how security
can be maintained when the throughput is increased and follow the common direction of
either modifying Bitcoin’s longest chain rule or implementing a different graphical structure
underlying the ledger.

In GHOST [22] an alternative consensus rule is proposed to the longest chain of Bitcoin,
focusing on creating a new protocol that maintains security guarantees even when faced with
high transaction loads. In this setting, GHOST takes into account the fact that forks are
more likely to be produced when the underlying ledger still takes the form of a tree, as with
Bitcoin. More specifically, when deciding what a newly mined block should point to, GHOST
no longer myopically points to the head of the longest chain, but rather starts from the genesis
block and at each fork, chooses the branch of the fork that leads to the heaviest subtree in
the ledger until reaching a leaf to point to. In this way, blocks that are off the main chain
can still contribute to the final consensus, which arguably maintains a degree of robustness
to strategic mining while coping with high throughput better than Bitcoin.

In [23, 24] protocols SPECTRE and PHANTOM are proposed, with ledger structures in
the form of directed acyclic graphs (DAG). The protocols in both of these implementations
suggest that every newly created block has to point to every available (visible) leaf in the
ledger. In that way every created block will eventually become part of the consensus, and the
security of the system remains affected by forks that will be produced due to high throughput,
since they will in turn be part of the ledger. The obvious advantage is that the system becomes
immune to attacks that focus on increasing the block rewards of a miner. On the other hand,
ordering the transactions and preventing other types of strategic behaviour becomes more
complicated.

Motivated by these ideas, we design a new theoretical framework that captures a large
family of DAG-based ledger implementations (including those mentioned in previous para-
graphs). We achieve this by introducing a parametric model which lets us adjust the number
of blocks each newly created block can point to, the block attributes a miner takes into ac-
count when choosing what blocks to point to, and the number of transactions a block can
store. Most importantly, we describe a theoretical framework for ledger growth in these DAG-
based models, along with a novel simplification for extrapolating valid transactions from a
ledger under the assumption that all miners are honest. With this in hand, we are able to
answer how our family of DAG-based ledgers copes with the high transaction loads they are
intended to tackle. Indeed, our results are structural in nature, for we show how fairness and
efficiency suffer from high transaction rates in spite of all agents behaving honestly in a given
DAG-based ledger.

2

Our Results. Our simulations allow us to show specific transaction load regimes that break
down efficiency for all protocols in our large class of DAG-based ledgers. Furthermore, we
show that in almost all transaction load regimes, fairness is not only lost for our DAG-based
ledgers, but exhibits a complicated relationship with respect to agent connectivity to the
underlying P2P network. It seems that increasing the outdegree of the blockchain’s nodes
from 1 to 2 helps substantially, while further improvements in efficiency are marginal and
mostly apparent if the throughput is pushed very high, where fairness is inherently limited
and the number of pointers required would fill up most of the block.

1.1 Related Work

Bitcoin was introduced in Nakamoto’s landmark white paper [18] as a decentralised digital
currency. Since its inception many researchers have studied several aspects of the protocol,
i.e. its security and susceptibility to different types of attacks [1, 4, 7, 8, 10, 17, 19], how it
behaves under a game-theoretic perspective [3, 14, 15] and how its scalability and inherent
transaction throughput issues can be improved. Since the latter is the most related to our
work, we give a more detailed exposition in the paragraphs that follow. Before we proceed,
we also want to refer the reader to [2, 25] for some extensive surveys which provide a good
view of the research and challenges that exist in the area.

Sompolinksy and Zohar [22], study the scalability of Bitcoin, analysing at the same time
the security of the protocol when the delays in the network are not negligible. More specif-
ically, they build on the results of Decker and Wattenhofer [5] and explore the limits of the
amount of transactions that can be processed under the protocol, while also studying how
transaction waiting times can be optimised when there is also a security constraint security.
In the same work, the Greedy Heaviest-Observed Sub-Tree chain (GHOST) is also presented
as a modified version of the Bitcoin protocol selection rule, and as a way of obtaining a more
scalable system with higher security guarantees. It is interesting to mention that many ex-
isting cryptocurrencies currently use variations of the GHOST rule, with Ethereum [6] and
Bitcoin-NG [9] being some notable examples. The authors argue that under this rule, the
possible delays of the network cannot affect the security of the protocol even if the designer
allows high creation rates of large-sized blocks and thus a high transaction throughput.

Subsequently, Kiayias and Panagiotakos [13] further study the GHOST protocol and pro-
vide a general framework for security analysis that focuses on protocols with a tree structure.
They expand upon the analysis of [22] and follow a direction similar to the one presented in
the work of Garay et al. [10], which only studies chain structures and cannot be directly im-
plemented in the setting of GHOST. We would like to point out that in [10] Garay et al. also
provide an extended analysis of their framework for the partially synchronous model under
the existence of bounded delays in the underlying P2P network of the protocol.

Lewenberg et al. [16] propose the structure of a DAG, instead of a tree, as a way of dealing
with high block creation rates and blocks of large size. Building on this idea, the same authors
in [24] present SPECTRE, a new PoW-based protocol that follows the DAG-structure, and is
both, scalable and secure. More specifically, they argue that SPECTRE can cope with high
throughput of transactions while also maintaining fast confirmation times. They also analyse
its security by studying several types of attacks. Part of the contribution of the paper is also
introducing a way to (partially) order created blocks via a voting rule among existing blocks,
which also contributes to the security of the protocol. SPECTRE has drawn the attention of

3

many researchers after its introduction and we refer the reader to [11, 12, 20, 23] for some
indicative related works.

Finally, DAG-based ledgers are also used in the white paper for IOTA, [21], describing a
cryptocurrency specifically designed for the Internet-of-Things industry. Although this setting
is different (i.e. absence of PoW and block creation rewards etc.) and the focus is on how one
can resolve conflicts between transactions and produce a system of high-active participation,
this work is still highly related to ours, since IOTA is studied under an asynchronous network.

2 DAG-based Ledgers

In this section we will describe a family of decentralised consensus algorithms for public
ledgers that generalise Bitcoin and SPECTRE. In what follows, we assume that there are n
strategic miners m1, ...,mn with hash powers h1, ..., hn respectively. When a given block is
found globally by the protocol, hi represents the probability that this block belongs to mi.
We will be studying DAG-based ledger implementations. Formally, these ledgers are such that
blocks and their pointers induce a directed acyclic graph with blocks as nodes and pointers
as edges. The maximum out-degree of a block, k is specified by the protocol and is in the
range 1 ≤ k ≤ ∞. Thus it is straightforward to see that Bitcoin for example, is a DAG-based
ledger where the DAG is in fact a tree (with k = 1). Finally, since blocks have bounded size,
we define 1 ≤ η <∞ to be the maximum number of transactions a block can store.

As mentioned in the introduction, we are primarily interested in studying issues of fairness
and ledger efficiency in DAG-based protocols catered to a high throughput regime. We recall
that a protocol is fair if a miner can expect to see a block reward proportional to their hash
power, and that a protocol efficiency is the ratio of all valid transactions to all transactions
broadcast over the P2P network. In this setting, and under the assumption of a discrete time
horizon, transactions and blocks that are propagated by users in the P2P network may take
multiple turns (the time it takes for the entire system to find a block) before they are seen by
certain agents within the system. For this reason, miners only see a portion of the entire block
DAG produced by a decentralised protocol as well as a portion of all transactions propagated
by all end users of the ledger.

In actuality, transactions that are posted to the P2P network of digital currencies directly
depend on other transactions. For this reason, we also model the set of transactions that
end users generate as a DAG. Furthermore, the structure of the transaction DAG itself has
important implications for how transactions are packed in blocks for any DAG-based ledger.
For example, if the transaction DAG is a path, and we are considering SPECTRE as our
DAG-based protocol, it is easy to see that transactions will only be packed proportional to
the deepest node of the block DAG, which in the high throughput regime can grow at a
much slower rate than that at which transactions are generated. At the other extreme, if the
transaction DAG only consists of isolated nodes, then any block can contain any transaction,
and the efficiency of SPECTRE is thus constrained by what transactions miners see rather
than the structure of the block DAG.

Ultimately, in addition to having computational power, a miner also has informational
power, which encapsulates how connected they are to the P2P network and consequently,
how much of each of the aforementioned DAGs they see at a given time. We model the
informational parameter of an arbitrary miner mi as a parameter qi ∈ [0, 1]. As qi approaches

4

1, mi is likely to see the entirety of both DAGs, whereas as qi approaches 0, mi is likely to
only see the blocks he mines and transactions he creates.

2.1 Ledger Growth Preliminaries

We begin by setting some preliminary notation about graphs that it will be used in several
parts as we define the model. Let G be the set of all finite directed graphs. For G ∈ G, V (G)
and E(G) ⊆ V (G)2 are the set of vertices and directed edges of G respectively. Furthermore,
for a tuple x = (xi)

n
i=1, we let πi(x) = xi be the projection onto the i-th coordinate. Finally,

we define the closure of a subset X ⊆ V (G) of vertices, which will be needed in order to
describe how a miner perceives the current state of the network.

Definition 1 (Closure). Suppose that G ∈ G, and let X ⊆ V (G) be a subset of vertices. We
denote the closure of X in G by Γ (X | G) and define it as the subgraph induced by all vertices
reachable from X via directed paths.

We now proceed by formally describing and exploring the stochastic growth of a DAG-
based ledger given m1, ...,mn strategic miners in a step-by-step fashion. As we already men-
tioned, we assume that the ledger grows over a finite discrete time horizon: t = 1, ..., T . Each
turn will consist of four phases: a block revelation phase, in which nature picks a miner to
initialise a block, an information update phase, where miners update their views of the block
and transaction graphs, an action phase, in which miners employ their strategies depending
on their local information, and a natural transaction generation phase, in which non-miners
stochastically publish transactions to the P2P network.

At the end of the action phase of each turn t, we maintain a global block-DAG and
transaction directed graph, denoted by Gglobt and T globt respectively. We say that the vertices

of Gglobt are blocks and we have that Gglobt contains every block (public or private) that has

been created up to turn t. Similarly, for T globt we have that it consists of every transaction

present in the network up to point t. We denote V (Gglobt) = {B1, ..., Bt}, where the i-th block

was created at the i-th turn and V (T globt) = T ∗t ∪ Tt, where T ∗t = {tx∗1, ..., tx∗t } (enumerated)
represents the set of the respective block rewards and Tt the set of the transactions.

Each block Bt, has out-degree of at most k and carries at most η+ 1 transactions denoted
by Tx(Bt) ⊆ V (T globt−1) such that tx∗t ∈ Tx(Bt). On the other hand, the out degree of every

transaction in T ∗t is 0 and the out degree of every vertex in Tt is at least 1. The reason for the
aforementioned constraints on the vertices of Gglob and T globt is that when a block is found,
block reward is created “out of thin air”, and can hence be a designated as a transaction
with no dependencies on which future transactions can depend. In addition, if A ⊆ Gglobt , we
let Tx(A) = ∪Bj∈V (A)Tx(Bj) be the set of all induced transactions from the subgraph A.

Finally, these time-evolving graphs will have the property that if t1 < t2, then Gglobt1
⊆ Gglobt2

and T globt1
⊆ T globt2

.
Let us now explore both the block and the transaction directed graphs from the perspective

of a miner. We suppose that each miner mi has the following information at the end of turn
t:

– Gpubi,t : The DAG consisting of all blocks mi has inferred from Gglobt via the P2P network.

– PBi,t ⊆ V (Gglobt): A set of private blocks mi has not yet shared to the P2P network.

5

– T pubi,t : The directed graph consisting of all transactions mi has inferred from T globt via the
P2P network.

– PTi,t ⊆ V (T globt): A set of private transactions mi has not yet shared to the P2P network.

Finally, we let Gpubt and T pubt be the set of all blocks and transactions that have been shared
to the P2P network respectively.

Definition 2 (Local Information). For a given miner mi, we let Li,t = (Gpubi,t , PBi,t, T
pub
i,t ,

PTi,t) and say this is the local information available to miner at the end of round t. We also
say that Lt = (Li,t)

t
i=1 is the local information of all miners at the end of round t.

We conclude by defining what we mean by a single-step P2P information update for a
miner, as well as what the strategy space available to a miner is.

Definition 3 (Information Update). Suppose that H ⊆ G are graphs. Furthermore, sup-
pose that the vertex set A ∈ V (G)\V (H). We define the distribution U((H,G), A, q) as a single
P2P information update via a specific sampling procedure. To sample G′ ∼ U((H,G), A, q) we
do the following:

– Let X = ∅
– Independently, for each v ∈ A, with probability q, add v to X.

– Let G′ = Γ (V (H) ∪X | G).

Definition 4 (Memoryless Miner Strategies). A miner strategy for mj is denoted by
Sj = (SIj , S

P
j , S

T
j) and consists of an initialisation strategy SIj , a publishing strategy SPj , and a

transaction creation strategy STj . Each of these functions takes as input Lj,t = (Gpubj,t , PBj,t, T
pub
j,t , PTj,t)

at any given round t.

– Initialisation strategy: SIj (Lj,t) = (XI , Y I) where XI ⊆ V (T pubj,t−1) ∪ PTj,t−1 and Y I ⊆
V (Gpubj,t−1) ∪ PBj,t−1. Furthermore, |XI | ≤ η and 1 ≤ |Y I | ≤ k.

– Publishing strategy: SPj (Lj,t) = (XP , Y P) where XP ⊆ PBj,t and Y P ⊆ PTj,t. with the

property that if Bi ∈ XP ⇒ tx∗i ∈ Y P .

– Transaction creation strategy: STj (Lj,t) =
(
{x1, ..., xk}, {Γ 1(x1), ..., Γ

1(xk)},W
)
, where

each xi /∈ V (T privt−1), each set Γ 1(xi) ⊆ V (T privt−1) is non-empty, and W ⊆ {x1, ..., xk}.

To make sense of Definition 4, it suffices to note that SIj is invoked when mj is chosen to

mine a block. Set XI represents the set of the transactions that the block will contain. The
number of these transactions can be at most η and each block forcibly contains tx∗t . On the
other hand, set Y I describes the set of the blocks that the newly created block will point to.
The number of these blocks can be at least 1 and at most k. Moving to SPj , this is invoked

when mj wishes to publish hidden blocks/transactions to the P2P network. Finally, STj is
invoked when mj wishes to create an arbitrary (finite) amount of new transactions x1, .., xk
that depend on transactions in T privj,t−1 (each xi has a non-empty set Γ 1(xi) of dependencies).

Notice that since Γ 1(xi) 6= ∅, that forcibly each xi can not be of the form tx∗r for some r.
Finally, W ⊆ {x1, ..., xk} represents which of the newly created transactions will be broadcast
to the P2P network.

6

2.2 Ledger Growth per State

In order to describe and explain ledger growth in DAG-based ledgers in more detail, we
introduce the notion of a ledger state and describe how the ledger transitions from state to
state. More specifically, at the end of round t, we say the ledger is in state σt = {Lt, Gglobt ,

T globt , Gpubt , T pubt }. Recall that as we already mentioned in Section 2.1, each turn t consists of
four different phases. We now present and describe formally what happens at each phase of a
turn in terms of ledger growth.

The Genesis Block and the Beginning of the Ledger: σ0 We bootstrap the ledger
by creating a genesis block, B0, which comes along with a genesis transaction tx∗0. As such,

V (Gpub0) = B0, E(Gpub0) = ∅, V (T pub0) = tx∗0, and E(T pub0) = ∅. In addition, L0,i = (Gpub0 ,

∅, tx∗0, ∅) for each mi, G
pub
0 = Gglob0 , and T pub0 = T glob0 , thus fully defining σ0.

The Mining Phase of Round t: ∆1 Suppose that σt−1 is given. First a random miner
is chosen, where the probability that each mi is chosen is precisely hi. Suppose mj is drawn,
the block Bt is initialised as follows: Tx(Bt) = π1(S

I
j (Lj,t)) ∪ tx∗t and we update the global

block DAG by letting V (Gglobt) = V (Gglobt−1) ∪ Bt and E(Gglobt) = E(Gglobt−1) ∪ {(Bt, y) | y ∈
π2(S

I
j (Lj,t))}. In addition, for r 6= j, we let L′r,t−1 = Lr,t−1, and for j, we let L′j,t−1 =

((Gpubj,t−1, PBj,t−1∪Bt), (T
pub
j,t−1, PTj,t−1∪tx∗t)), so that L′t−1 = (L′i,t−1)

n
i=1. With this in hand, we

can express the randomised transition∆1(σt−1) as follows:∆1(σt−1) = {L′t−1, G
glob
t , T globt−1 , G

pub
t−1,

T pubt−1}

The Information Update Phase of Round t: ∆2 Suppose that ∆1(σt−1) = {L′t−1, G
glob
t ,

T globt−1 , G
pub
t−1, T

pub
t−1} is given after block initialisation. For each miner mi, we sample Ai ∼

U
(

(Gpubi,t−1, G
pub
t−1), V (Gpubt−1) \ V (Gpubi,t−1), qi

)
from the block-DAG, and from the transaction

DAG we sample Ci ∼ U
(

(T pubi,t−1, T
pub
t−1), V (T pubt−1) \ V (T pubi,t−1), qi

)
. We also let Fi = Γ (V (Ci) ∪

Tx(Ai) | T globt−1). Accordingly, we can define Li,t
′′ = ((Ai, PBi,t−1), (Fi, PTi,t−1)), and Li,t−1

′′ =
(Lt−1

′′)ni=1. With this in hand, we can express the randomised transition ∆2 ◦ ∆1(σt−1) as

follows: ∆2 ◦∆1(σt−1) = {Lt−1′′, Gglobt , T globt−1 , G
pub
t−1, T

pub
t−1}

The Action Phase of Round t: ∆3 Let ∆2 ◦ ∆1(σt−1) = {Li,t′′, Gglobt , T globt−1 , G
pub
t−1, T

pub
t−1}

be given after an information update phase. We first update the global transaction graph by
letting the vertices of a new graph be:

V (T glob
′

t) = V (T globt−1) ∪ {tx∗t } ∪
(
∪ni=1π2(S

P
i (Li,t−1

′′))
)
∪
(
∪ni=1π3(S

T
i (Li,t−1

′′))
)

and letting the edges of the new graph be:

E(T glob
′

t) = E(T globt−1) ∪
(
∪ni=1E(π2(S

P
i (Li,t−1

′′)))
)
∪
(
∪ni=1E(π3(S

T
i (Li,t−1

′′)))
)

where we slightly abuse notation and for a set of transactions, A, we denote E(A) as the set
of all tuples (x, v) such that x ∈ A and v is a transaction x depends on. With this in hand,
We can define the following objects according to the deterministic strategies Si of each mi:

7

– Gpubi,t = Γ (V (Gpubi,t−1) ∪ π1(SPi (Li,t−1
′′)) | Gglobt)

– PBi,t = PBi,t−1
′′ \ π1(SPi (Li−,t−1

′′))

– T pubi,t = Γ (V (T pubi,t−1) ∪ π2(SPi (Li,t−1
′′)) | T glob

′

t)

– PTi,t = PTi,t−1 \ π2(SPi (Li−,t−1
′′))

Finally, we let Li,t = ((Gpubi,t , PBi,t), (T
glob
i,t , PTi,t)), Lt = (Li,t)

n
i=1, G

pub
t = ∪ni=1G

pub
i,t and

T pub
′

t = T pubt−1∪
(
∪ni=1T

pub
i,t

)
. With this in hand, we can express the transition ∆3◦∆2◦∆1(σt−1):

∆3 ◦∆2 ◦∆1(σt−1) = {Lt, Gglobt , T glob
′

t , Gpubt , T pub
′

t }

Nature Adds Transactions to T glob
t : ∆4 Finally, we model transactions that are nat-

urally produced by agents other than miners, m1, ...,mn (the end-users of the ledger) and
broadcast via the P2P network. To this end, we suppose that D is a pre-defined function, such

thatD(Gglobt , T glob
′

t) is a distribution that returns ({x1, ..., xk}, {Γ 1(x1), ..., Γ
1(xk)}), a random

finite set of new transactions {x1, ..., xk} along with their dependencies {Γ 1(x1), ..., Γ
1(xk)},

with the property that Γ 1(xi) 6= ∅ for each xi. This latter point ensures that no xi is of the

form tx∗r . With this in hand, we let A ∼ D(Gglobt , T glob
′

t) and define V (T globt) = T glob
′

t ∪ π1(A),

E(T globt) = E(T glob
′

t) ∪ π2(A), V (T pubt) = T pub
′

t ∪ π1(A), and E(T pubt) = E(T pub
′

t) ∪ π2(A).
Ultimately, this allows us to define

∆4

(
{Lt, Gglobt , T glob

′

t , Gpubt , T pub
′

t }
)

= {Lt, Gglobt , T globt , Gpubt , T pubt }

Putting Everything Together. In the previous sections we have detailed every pro-
cess of the evolution of a DAG-based ledger. Before stating the formal definition in its
full generality, we recall that the aforementioned growth process has several parameters:
θ = (m,h, q,S, η, k,D).

– m = (m1, ...,mn) are strategic miners.

– h = (h1, ..., hn) are the hash rates of each miner.

– q = (q1, ..., qn) is the informational parameter of each miner.

– S = (S1, ..., Sn) are ledger-building strategies for strategic miner

– η ≥ 1 is the maximum number of transactions in a single block.

– k ≥ 1 is the maximum out-degree of a block in the block DAG.

– D is a natural transaction generation distribution as per above.

To avoid confusion, we let ∆θ = ∆4 ◦∆3 ◦∆2 ◦∆1, with the influence of θ implicit in our
previous exposition. With this we are able to fully formulate ledger growth in its complete
generality.

Definition 5 (Formal Ledger Growth). Suppose that θ = (m,h, q,S, η, k,D). We let Pθ
denote DAG-based ledger growth governed by θ and define it recursively as follows: We let σ0
be defined as per Section 2.2, and consecutively let σt = ∆t

θ(σ0) for t ≥ 1.

8

3 Pf,k Ledger Models and Honest Behaviour

In the previous section we described at length how a ledger grows under arbitrary parameters
θ = (m,h, q,S, η, k,D). The main purpose of this section is twofold: first we introduce a
family of honest strategies that generalise honest mining in Bitcoin and SPECTRE called
Pf,k mining, and second we introduce constraints on D that represent honest transaction
generation by end-use agents in a DAG-based ledger (this includes Bitcoin and SPECTRE as
well).

Definition 6 (Depth and Weight of a Block). Suppose that G ∈ G is a block-DAG.
In other words, G is connected and has a genesis block B0. For a given Bt ∈ G, we let
w(Bt) = |Γ ({Bt} | G))| − 1 be the weight of Bt. This is the number of predecessors Bt has
in G. We also define D(Bt) = dG(Bt, B0) as the depth of Bt. This is the graphical distance
between Bt and B0, i.e. the length of the (unique) shortest path between Bt and B0 in G.

In Bitcoin, miners resolve ambiguity in ledger consensus by initialising found blocks to
point to the longest chain in the DAG. One reason for this is that agents have provably
used significant computational power to grow said chain, and re-writing this history is thus
computationally infeasible. In DAG-based ledgers, agents may point to multiple blocks. Thus,
following this same thought process, they should point to blocks with a provably significant
amount of computation in their histories. The issue, however, is that measuring how much
computation exists in the past of a leaf is ambiguous in DAGs: a block could have either large
weight or large depth (unlike in Bitcoin where these quantities are always the same), and it
is unclear to decide which to give precedence to. In order to completely rank the importance
of leaves in a block DAG, we simply use a family of score functions that expresses convex
combinations of depth and weight.

Definition 7 (Score Function). Suppose that α ∈ [0, 1] and β = 1−α. We say that f is an
(α, β) block-DAG score function if for a given block-DAG, G ∈ G, f(Bt) = αD(Bt) +βw(Bt).

In a nutshell, honest block-DAG growth in Pf,k protocols with parameter α and β pre-
scribes that miners prepare blocks with at most k pointers that point the locally visible blocks
in the block-DAG that with highest score under f .

3.1 Valid Blocks and Transactions

In ledgers employing decentralised consensus protocols, there is an explicit consensus mecha-
nism whereby agents are able to look at their local view of the ledger and extrapolate valid
blocks and subsequently valid transactions within the local view of the ledger. In Bitcoin for
example, valid blocks consist of the longest chain in the ledger, and valid transactions consist
of transactions within said longest chain. SPECTRE, on the other hand, has any seen block
as valid, but the valid transaction extraction process is a complicated voting procedure that
extracts a subset of transactions within the local view of the DAG as valid. We proceed by
providing a definition of valid block and transaction extractors in Pf,k models that generalises
both of these examples.

Definition 8 (Valid Block Extractors and Valid Transaction Extractors). Suppose
that G is a block-DAG and that `1, .., `k are the k leaves in G that have the highest score

9

under f . Then we say that V B(G) = Γ ({`1, ..., `k} | G) is the DAG of valid blocks in G under
Pf,k. In addition, we let V T (G) ⊆ Tx(V B(G)) be the set of valid transactions for a specified
transaction extractor function V T . We say that V T is in addition monotonic if it holds that
if V B(H) ⊆ V B(G), then V T (H) ⊆ V T (G).

In what follows we define a special type of monotonic valid transaction selection rule
called present transaction selection. The reason we outline this simple selection rule is that in
Section 3.3 we will show that if all miners employ monotonic valid transaction selection and
the honest strategies presented in Section 3.2, then we can assume without loss of generality
that they employ present transaction selection as a valid transaction selection rule.

Definition 9 (Present Transaction Selection). Suppose that G is a block-DAG and that
`1, .., `k are the leaves in G that have the highest score under f . Then we say that V B(G) =
Γ ({`1, ..., `k} | G) is the DAG of valid blocks in G under Pf,k. In addition we say that
PV T (G) = Tx(V B(G)) is the set of present valid transactions in G under Pf,k.

3.2 Defining SI , SP , and ST for Honest Mining in Pf,k

We define Hj = (HI
j , H

P
j , H

T
j) as the honest strategy employed by mj in Pf,k, and describe

each component below.

– HI
j : Compute A = V B(Gpubj,t) and B = V T (Gpubj,t). Let HI

j (Lj,t) = (X,Y). X is the set

of at most η oldest non-block-reward (i.e. not of the form tx∗r) transactions in T pubj,t \ B
(ties are broken arbitrarily) with a graphical closure in B. Y = {`1, ...`k} is the set of k

highest-score leaves in Gpubj,t under f .

– HP : Publish all private blocks and transactions immediately

– HT : Create no new transactions (the assumption is that transactions created by pools are
negligible with respect to the total transaction load of the ledger)

Before continuing, we note that in the Pf,k model, HT ensures that honest miners do not
create and broadcast any transactions themselves. This, of course, is not the case in practice,
but it is an accurate approximation to a regime in which the fraction of transactions created
by miners is a negligible fraction of all transactions created by end-users of the ledger.

Implementation of Bitcoin and SPECTRE as Pf,k Protocols. With the previous
machinery in place, we can see that block-DAG and transaction-DAG growth in Bitcoin and
SPECTRE are special cases of Pf,k ledgers. For Bitcoin, we let k = 1, and any parameter
setting, (α, β) for f results in Bitcoin growth. As for SPECTRE, we let k =∞ and once more
any parameter setting (α, β) for f suffices to implement honest SPECTRE ledger growth.

3.3 Honest Transaction Consistency

As mentioned in Section 3.1, we can show that amongst monotonic transaction extractors,
present transaction extractors are all we need for honest ledger growth in the Pf,k model.

Theorem 1. If the valid transaction extractor, V T , is monotonic and all miners employ
H = (HI , HP , HT), then V T is a present transaction extractor.

10

Proof. Suppose that Li,t = (Gpubi,t , PBi,t, T
pub
i,t , PTi,t) is the local information available to mi

at turn t. Since mi is honest, one can easily see that Gpubi,t = Gprivi,t = Gi,t and T pubi,t = T privi,t =
Ti,t. Clearly V T (Gi,t) ⊆ PV T (Gi,t). Now suppose that x ∈ PV T (Gi,t). This means that
x ∈ Tx(Br) for some block Br found by say mj . This means that in turn r, mj invoked HI to
create Br, which means that since x ∈ Tx(Br), all dependencies of x are in V T (Γ (Br | Gi,t)),
the valid transactions from the DAG consisting of the closure of Br in the block DAG. However
V T (Γ (Br | Gi,t)) ⊆ V T (Gi,t) since V T is monotonic. Therefore x has its dependencies met
in V T (Gi,t) so that x ∈ V T (Gi,t). This implies V T (Gi,t) = PV T (Gi,t) as desired. ut

In light of this theorem, we focus on monotonic valid transaction extractors given their
generality. Hence, from now on we assume that when we invoke V T , we in fact mean that V T
is a present transaction extractor.

3.4 Honest Natural Transaction Generation

Notice that HT dictates that each mi does not produce or propagate transactions created by
themselves. Hence, it is crucial that we properly define D in the Pf,k model. At first one may

be tempted to simply treat the random growth of T globt as independent of Gglobt , but this is

a grave mistake. To see why, imagine that Gglobt contains some block Br that is orphaned by

each mi (note that this can only happen if k < ∞). If the growth of T globt is independent of

that of Gglobt , then it could be the case that many (if not infinitely many) future transactions
depend on t∗r . However, if Br is orphaned by all miners, tx∗r is not valid, hence none of these
future transactions will be added to the ledger via close inspection of how HI is defined.

A compelling fact is that if all miners have orphaned Br, then chances are that whatever
local view of Gpubt an end-user has, they too will have orphaned Br, and thus will not have tx∗r
as a valid transaction. In more direct terms, any money created via the block reward of Br is
not actually in the system for an end-user, so if this end-user is honest, there is no reason why
they would produce transactions that would depend on this illegitimate source of currency.

Definition 10 (Honest Transaction Distributions). Let Gglobt be a global block DAG at

turn t with k highest leaves are `1, ..., `k. In an honest setting, V B(Gglobt) = Γ ({`1, ..., `l} |
Gglobt) and V T (Gglobt) = Tx(V B(Gglobt)). We say that D(Gglobt , T globt) is an honest transaction

distribution if x ∼ D(Gglobt , T globt) is such that x /∈ T globt and its dependencies lie strictly in

V T (Gglobt).

3.5 Non-Atomic Miners

It is common in the analysis of Bitcoin and related cryptocurrencies to group an arbitrary
number of honest miners into one honest miner with the aggregate hash power of all different
honest miners. The behaviour of multiple honest miners or one aggregate honest miner is
indistinguishable from the local perspective of a single strategic miner. In the DAG-based
ledger one could perform a similar analysis, however the partial information inherent in our
model does not allow us to directly do so. The reason for this is that separate honest miners
may have different partial views of the block DAG and transaction DAG. However, if for a
given time horizon t = 1, ..., T , it is the case that a group of honest miners each have a small
enough hash power that they most likely never see more than at most one block in the time

11

horizon, we can aggregate all said miners into one large honest miner that simply re-samples
their view of the block DAG and transaction DAG whenever they are chosen to initialise a
block and invoke HI . We call such miners non-atomic and formalise their definition below.

Definition 11 (Non-atomic miner). For a given time-horizon, t = 1, ..., T , we say that a
group of miners m′1, ...,m

′
k is non-atomic if with high probability, each such miner finds at

most one block in this time horizon.

Simulating Non-Atomic Miners. When a group of non-atomic miners finds a block they
need to create a fresh sample of what partial information they have in the block/transaction
DAG. To do so, let us suppose that m′1, ...,m

′
k are a group of non-atomic miners which we

group together into a single miner, m∗ of hash power
∑k

i=1 hi. Furthermore, we suppose
that each non-atomic miner in this group has informational parameter q. When m∗ finds a
block at time-step t = 1, ..., T , we simply take each block/transaction present in the global
block/transaction DAG, and for each turn it has been present in its respective global DAG,
flip a biased coin of weight q to see whether m∗ directly sees this block/transaction. Once
this preliminary list of seen blocks/transactions is created, m∗ also sees all ancestors of said
blocks/transactions.

3.6 Payoffs and Transaction Generation Rate

Block Rewards and Transaction Fees. We suppose that at time-step T , miners get a
normalised block reward of 1 per block that they have in V B(GglobT). As for transaction fees, the
full generality of Pf,k protocols only specifies how to extrapolate valid transactions conditional
upon everyone being honest, and not who receives transaction fees (this is subsumed in the
details of V T in the general setting). For this reason we further assume that transaction fees
are negligible in comparison to block rewards over the time horizon t = 1, ..., T .

Transaction Generation Rate. Although in full generality there is no restriction on
how many transactions nature may create in a given turn, we impose a fixed constraint on
this quantity: λ. As such, each turn introduces {xt,1, ..., xt,λ} transactions sampled from a
specified honest transaction distribution D. Furthermore, in our simulations we let λ = η, so
that the ledger infrastructure can, in theory, cope with the transaction load if all miners have
full information, and thus we can see specifically it falls short of this objective in the partial
information setting.

4 Computationally Modelling Honest Growth in Pf,k Ledgers

We now describe the pseudo-code for honest ledger growth in Pf,k ledgers. In the imple-
mentation described in Algorithm 1 we make the following assumptions:

– The underlying ledger is Pf,k
– All miners are Honest

– V T is a present transaction extractor

– The number of transactions created by miners is negligible with respect to the total number
of transactions created within the P2P network.

12

Algorithm 1 Honest Ledger Growth

Require:
Ledger growth Parameters: θ = (α, q, η, k,D, λ, T)

Genesis:
G0 ← ({B0}, ∅), T0 ← ({tx∗0}, ∅), Tx(B0)← tx∗0
for j = 1, . . . , N do
Gvis

i,0 ← G0

T vis
i,0 ← T0

for t = 1, . . . , T do
Mining Phase:
Sample i from α
Compute `1, ..., `r, top r ≤ k leaves of Gvis

i,t−1 in terms of score, f
Compute txi1 , ..., txis , with s ≤ η, oldest pending transactions of non-zero out-degree in T vis

i,t−1 (ties broken
lexicographically)
Gt ← (V (Gt−1) ∪Bt, E(Gt−1) ∪ {(Bt, `1), ..., (Bt, `r)})
Tx(Bt) = tx∗t ∪ {txi1 , ..., txis}
Owner(Bt) = i
V (Gvis

i,t−1)← Bt, V (T vis
i,t−1)← tx∗t

Tx Generation:
Compute valid transactions: V Tt−1 ⊆ V (Tt−1)
Tt ← (V (Tt−1) ∪ {tx∗t }, E(Tt−1))
for j = 1, . . . , λ do

Use D and V Tt−1 to draw {txi1 , ..., txis} dependencies of txt,j
V (Tt)← V (Tt) ∪ {txt,j}, E(Tt)← E(Tt) ∪ {(txt,j , txi1), ..., (txt,j , txis)}

Information Update:
for j = 1, . . . , N do
Gvis

j,t ← Gvis
j,t−1, T

vis
j,t ← T vis

j,t−1

for each Br ∈ V (Gt) \ V (Gvis
j,t) do

With probability qi: V (Gvis
j,t)← V (Gvis

j,t) ∪ {Br}
for each txs ∈ V (Tt) \ V (T vis

j,t−1) do
With probability qi: V (T vis

j,t)← V (T vis
j,t) ∪ {txs}

Gvis
j,t ← Γ (V (Gvis

j,t), Gt)
T vis
j,t ← Γ (Tx(Gvis

j,t) ∪ V (T vis
j,t), Tt)

return GT , TT , {Owner(Bt)}Tt=1, {Tx(Bt)}Tt=1, {Gvis
i,T }Ni=1, {T vis

i,T }Ni=1

13

– The honest transaction generation distribution, D(Gglobt , T glob)t), is modelled as follows:
for a given transaction, tx, to be sampled via D, first k ∼ Poiss(γ) is drawn as the number

of dependencies tx will have from V T (Gglobt), and subsequently, x1, ..., xk are drawn from

V T (Gglobt) uniformly randomly, where we allow repetitions. Ultimately we let {y1, .., yr}
be the unique transaction set extrapolated from {x1, ..., xk} and this is precisely the set
of dependencies of the newly sampled tx. We note that transactions can depend on the
block reward of arbitrarily old blocks. Hence uniformity is not an unfeasible assumption
in sampling dependencies of a new transaction given our time horizons. Finally, in our
simulations, since T = 50, we let γ = 2 so that transactions on average have multiple
dependencies on average.

Given these assumptions, we also condense the notation used for key variables needed for
ledger growth in the pseudo-code for Algorithm 1. In particular:

– Gt and Tt are the global block and transaction DAGs respectively

– Gvisi,t and T visi,t are the portions of Gt and Tt visible to mi at the end of turn t.

– Owner(Bt) = i means that mi mined block Bt

5 Results

5.1 Fairness

We recall that one of the key properties of Bitcoin is that it is fair: miners earn block reward
proportional to the computational resources they expend on extending the ledger. One of the
most significant observations from our simulations is that Pf,k ledgers are rarely fair as soon
as agents begin having informational parameters, q < 1, as is the case in a high throughput
setting. To illustrate this phenomenon, we study a two-miner scenario with agents m0 and
m1 of hash power (1−h1, h1) and informational parameters (q0, q1). m0 is modelled as a non-
atomic miner and we empirically compute the surplus average block reward of m1 relative
to the baseline h1 they would receive in a fair protocol. Our results are visualised in Figure
1. Each row of the figure represents k = 1, 2, 3 respectively and each column represents
q0 = 0.005, 0.05, 0.2. Each individual heatmap fixes k and q0 and plots average block reward
surplus for m1 as q1 ∈ [0, 1] and h1 ∈ (0, 0.5] are allowed to vary. Finally, each pixel contains
the average block reward surplus for T = 50 and averaged over 50 trials. We notice that an
added strength to our fairness result is that they hold, irrespective of the underlying honest
transaction distribution D used in practice.

The most jarring observation is that that for a large amount of parameter settings, m1

earns a vastly different average block reward than their fair share h1. In fact, for fixed k and
q0, there seem to be three regions of the hash space h1 ∈ (0, 0.5] with qualitatively distinct
properties:

– If h1 is large enough, m1 strictly benefits from having lower q1 values. This is due to the
fact that an honest miner with small q0 necessarily sees his own blocks and is inadvertently
acting somewhat “selfishly”. Hence if their hash rate is high enough, their persistent mining
upon their own blocks may end up orphaning other blocks and give them a higher share
of valid blocks in the final DAG.

14

– If h1 is small enough, m1 strictly benefits from having higher q1 values. Contrary to the
previous point, at small hash values, m1 only finds a few blocks, and hence they risk
losing their entire share of blocks if these blocks aren’t well positioned in the block DAG,
since they are in no position to inadvertently overtake the entire DAG via pseudo-selfish
behaviour resulting from low q1 values.

– Finally, for intermediate h1 values, m1 no longer has a monotonic surplus with respect to
q1 but rather a concave dependency. This can be seen as an interpolation of the previous
two points.

We notice that where these qualitative regions of h1 values lie within (0, 0.5] depends entirely
on k and q0. In general, for fixed k (i.e specific rows within Figure 1), as q0 increases, the
transitions between these regions shift rightwards, and for fixed q0 (i.e. specific columns in
Figure 1) as k increases, also shifts rightwards, as increasing k can be seen to informally have
the same effect as uniformly increasing q0 and q1 as agents are more likely to see blocks due
to multiple pointers.

5.2 Hash Power / Information Tradeoff

We note that in the high throughput setting, miners may be faced with the choice of investing
resources into increasing their connectivity to the underlying P2P network of the protocol
or their hash power. The incentives behind such a decision are ultimately governed by how
much it costs for m1 to improve either q1 or h1. Figure 1 clearly shows that such a decision
is non-trivial. Roughly speaking “small” miners benefit from increasing their connectivity to
the P2P network and “large” miners may even benefit more from having less connectivity to
the P2P network!

Finally we would like to mention that for k = ∞ there is no point in plotting fairness as
per our definitions, since such a value of k automatically makes Pf,k fair. On the other hand,
as we will see shortly, even when k =∞, Pf,k protocols suffer from efficiency shortcomings at
high enough transaction loads.

5.3 Ledger Efficiency

DAG-based ledgers have been created with the aim of tackling a higher transaction load in
cryptocurrencies. Given that we have a way of modelling honest transaction growth, there
are three different metrics we use to precisely quantify how well DAG-based ledgers deal
with a higher throughput of transactions. The first and most important is the Proof of Work
Efficiency. More specifically, for a given DAG-based Ledger, we say that the PoW efficiency
is the fraction of globally valid transactions that are present within the valid sub DAG of the
block DAG, over all published transactions.

This is the most important metric, since the goal of a ledger is to maximise the rate
at which new transactions are processed. We also compare ledgers in terms of the average
fraction of orphaned blocks they create and their transaction lag, which is defined as the time
difference between the issue and successful inclusion of the DAG’s most recent transaction
and the final turn of the time horizon.

For our experiments, we compared Pf,k performance for k ∈ {1, 2, 3,∞} and n = 4 atomic
miners each with hi = 1/4 and varying qi’s. For all graphs, we have η = 6, T = 100 and the
results have been averaged over 50 trials. First of all, we notice that for all parameter settings

15

Fig. 1. Surpluses for k = 1, 2, 3 at q0 ∈ {0.005, 0.05, 0.2}

of Pf,k, there exist information regimes where if each qi is low enough, the ledger suffers in
its efficiency–even in the case where k = ∞. We also observe that increasing k improves all
metrics except lag, but not dramatically. For reasonable values of qi, before fairness becomes
an issue, there is a significant performance increase between k = 1 and k ≥ 2. However, k > 2
is only really necessary for extremely small qi.

We also compared the performance for n ∈ {1, 2, . . . , 20} with q = h = 1/n, leading
to similar results. Notably, as the number of miners grows the number of orphaned blocks
decreases and the PoW efficiency improves with k.

5.4 Dynamically adjusting k and f

A key feature of Bitcoin is its dynamically adjusted difficulty. Our results suggest that a
DAG-based ledger may also be able to dynamically adjust its internal parameters k and f to
cope with changing transaction loads from end users. In fact, we see that high values of k such
as in SPECTRE do not provide much more of an added benefit to truncating the number of
pointers at a smaller k. However, a dynamically adjusted protocol could sacrifice block size
to make room for more pointers if efficiency is suffering in a period of high transaction loads
to the ledger.

16

10 4 10 3 10 2 10 1 100

qi

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
 O

rp
ha

ne
d

Bl
oc

ks

k = 1
k = 2
k = 3
k =

10 1 100

qi

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
oo

f o
f W

or
k

Ef
fic

ie
nc

y

k = 1
k = 2
k = 3
k =

10 1 100

qi

0

5

10

15

20

25

Tr
an

sa
ct

io
n

La
g

k = 1
k = 2
k = 3
k =

Fig. 2. Performance Metrics for n = 4 miners and k ∈ {1, 2, 3,∞}

1 3 5 7 9 11 13 15 17 19 20
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
 O

rp
ha

ne
d

Bl
oc

ks

k = 1
k = 2
k = 3
k =

1 3 5 7 9 11 13 15 17 19 20
n

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
oo

f o
f W

or
k

Ef
fic

ie
nc

y

k = 1
k = 2
k = 3
k =

Fig. 3. Performance Metrics for n ∈ {1, 2, . . . , 20} and k ∈ {1, 2, 3,∞}

6 Discussion / Future Directions

Our results suggest inherent structural limitations to DAG-based ledgers. It remains to be
seen whether the limitations formulated in this paper occur in practice. Given the generality
of our DAG-based growth model, it would be interesting to study strategic considerations of
Pf,k ledgers in their full generality, or augment the ledger space with a more complicated class
of score functions for example.

In addition, it is known that there are other important limitations to Bitcoin. For example,
the fact that every agent needs to keep a full copy of the ledger to make sure that validity is
safe, or that PoW protocols result in an excessive use of energy resources around the globe.
It would be interesting if the general approach of this paper could be applied to proposed
solutions to these issues whereby one demonstrates inherent structural limitations in spite of
all agents acting honestly.

7 Acknowledgements

Georgios Birmpas was supported by the European Research Council (ERC) under the ad-
vanced grant number 321171 (ALGAME) and the grant number 639945 (ACCORD). Philip
Lazos was supported by the European Research Council (ERC) under the advanced grant
number 321171 (ALGAME) and the advanced grant number 788893 (AMDROMA). Fran-
cisco J. Marmolejo-Cosśıo was supported by the Mexican National Council of Science and
Technology (CONACyT). The authors would also like to thank Elizabeth Smith for the fruit-
ful discussions during the preparation of this work.

17

Bibliography

[1] Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. On bitcoin and red
balloons. In Proceedings of the 13th ACM Conference on Electronic Commerce, EC
2012, Valencia, Spain, June 4-8, 2012, pages 56–73, 2012.

[2] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, and
Edward W. Felten. Sok: Research perspectives and challenges for bitcoin and cryptocur-
rencies. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015, pages 104–121, 2015.

[3] Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind Narayanan. On the
instability of bitcoin without the block reward. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 154–167. ACM, 2016.

[4] Francisco J. Marmolejo Cosśıo, Eric Brigham, Benjamin Sela, and Jonathan Katz. Com-
peting (semi)-selfish miners in bitcoin. CoRR, abs/1906.04502, 2019. URL http:

//arxiv.org/abs/1906.04502.
[5] Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin net-

work. In 13th IEEE International Conference on Peer-to-Peer Computing, IEEE P2P
2013, Trento, Italy, September 9-11, 2013, Proceedings, pages 1–10, 2013.

[6] ethereum/wiki. A next-generation smart contract and decentralized application platform.
https://github.com/ethereum/wiki/wiki/WhitePaper/., October 2015.

[7] Ittay Eyal. The miner’s dilemma. In 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 89–103, 2015.

[8] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable.
In Financial Cryptography and Data Security - 18th International Conference, FC 2014,
Christ Church, Barbados, March 3-7, 2014, Revised Selected Papers, pages 436–454, 2014.

[9] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse. Bitcoin-ng:
A scalable blockchain protocol. In 13th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2016, Santa Clara, CA, USA, March 16-18, 2016,
pages 45–59, 2016.

[10] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, pages 281–310, 2015.

[11] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Al-
gorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, October 28-31, 2017,
pages 51–68, 2017.

[12] Kolbeinn Karlsson, Weitao Jiang, Stephen B. Wicker, Danny Adams, Edwin Ma, Robbert
van Renesse, and Hakim Weatherspoon. Vegvisir: A partition-tolerant blockchain for the
internet-of-things. In 38th IEEE International Conference on Distributed Computing
Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018, pages 1150–1158, 2018.

[13] Aggelos Kiayias and Giorgos Panagiotakos. On trees, chains and fast transactions in
the blockchain. In Progress in Cryptology - LATINCRYPT 2017 - 5th International
Conference on Cryptology and Information Security in Latin America, Havana, Cuba,
September 20-22, 2017, Revised Selected Papers, pages 327–351, 2017.

http://arxiv.org/abs/1906.04502
http://arxiv.org/abs/1906.04502

[14] Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tselekounis.
Blockchain mining games. In Proceedings of the 2016 ACM Conference on Economics
and Computation, pages 365–382. ACM, 2016.

[15] Elias Koutsoupias, Philip Lazos, Foluso Ogunlana, and Paolo Serafino. Blockchain min-
ing games with pay forward. In The World Wide Web Conference, WWW 2019, San
Francisco, CA, USA, May 13-17, 2019, pages 917–927.

[16] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols.
In Financial Cryptography and Data Security - 19th International Conference, FC 2015,
San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers, pages 528–547,
2015.

[17] Hanqing Liu, Na Ruan, Rongtian Du, and Weijia Jia. On the strategy and behavior
of bitcoin mining with n-attackers. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, pages 357–368. ACM, 2018.

[18] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
[19] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining: General-

izing selfish mining and combining with an eclipse attack. In IEEE European Symposium
on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016,
pages 305–320, 2016.

[20] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless
model. In 31st International Symposium on Distributed Computing, DISC 2017, October
16-20, 2017, Vienna, Austria, pages 39:1–39:16, 2017.

[21] Serguei Popov. The tangle. Unpublished paper, 2018.
[22] Yonatan Sompolinsky and Aviv Zohar. Accelerating bitcoin’s transaction processing. fast

money grows on trees, not chains. Cryptology ePrint Archive, Report 2013/881, 2013.
https://eprint.iacr.org/2013/881.

[23] Yonatan Sompolinsky and Aviv Zohar. Phantom: A scalable blockdag protocol. Cryp-
tology ePrint Archive, Report 2018/104, 2018. https://eprint.iacr.org/2018/104.

[24] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: A fast and scalable
cryptocurrency protocol. Cryptology ePrint Archive, Report 2016/1159, 2016. https:

//eprint.iacr.org/2016/1159.
[25] Florian Tschorsch and Björn Scheuermann. Bitcoin and beyond: A technical survey on

decentralized digital currencies. IEEE Communications Surveys and Tutorials, 18(3):
2084–2123, 2016.

19

https://eprint.iacr.org/2013/881
https://eprint.iacr.org/2018/104
https://eprint.iacr.org/2016/1159
https://eprint.iacr.org/2016/1159

	Fairness and Efficiency in DAG-based Cryptocurrencies
	1 Introduction
	1.1 Related Work

	2 DAG-based Ledgers
	2.1 Ledger Growth Preliminaries
	2.2 Ledger Growth per State
	The Genesis Block and the Beginning of the Ledger: 0
	The Mining Phase of Round t: 1
	The Information Update Phase of Round t: 2
	The Action Phase of Round t: 3
	Nature Adds Transactions to Tglobt: 4
	Putting Everything Together.

	3 Pf,k Ledger Models and Honest Behaviour
	3.1 Valid Blocks and Transactions
	3.2 Defining SI, SP, and ST for Honest Mining in Pf,k
	3.3 Honest Transaction Consistency
	3.4 Honest Natural Transaction Generation
	3.5 Non-Atomic Miners
	3.6 Payoffs and Transaction Generation Rate

	4 Computationally Modelling Honest Growth in Pf,k Ledgers
	5 Results
	5.1 Fairness
	5.2 Hash Power / Information Tradeoff
	5.3 Ledger Efficiency
	5.4 Dynamically adjusting k and f

	6 Discussion / Future Directions
	7 Acknowledgements

