

Do Not Be Fooled: Toward a Holistic Comparison of

Distributed Ledger Technology Designs

Florian Gräbe

Karlsruhe Institute of

Technology

florian.graebe

@web.de

Niclas Kannengießer

Karlsruhe Institute of

Technology

niclas.kannengiesser

@kit.edu

Sebastian Lins

Karlsruhe Institute of

Technology

lins@kit.edu

Ali Sunyaev

Karlsruhe Institute of

Technology

sunyaev@kit.edu

Abstract

Distributed Ledger Technology (DLT) enables a

new way of inter-organizational collaboration via a

shared and distributed infrastructure. There are plenty

of DLT designs (e.g., Ethereum, IOTA), which differ in

their capabilities to meet use case requirements. A

structured comparison of DLT designs is required to

support the selection of an appropriate DLT design.

However, existing criteria and processes are abstract

or not suitable for an in-depth comparison of DLT de-

signs. We select and operationalize DLT characteris-

tics relevant for a comprehensive comparison of DLT

designs. Furthermore, we propose a comparison pro-

cess, which enables the structured comparison of a set

of DLT designs according to application require-

ments. The proposed process is validated with a use

case analysis of three use cases. We contribute to re-

search and practice by introducing ways to operation-

alize DLT characteristics and generate a process to

compare different DLT designs according to their suit-

ability in a use case.

1. Introduction

Given the high potential of distributed ledger tech-

nology (DTL), numerous DLT designs have been de-

veloped during the past decade (e.g., Ethereum, IOTA,

and Tezos). Such DLT designs specialize in fulfilling

requirements of a particular set of applications on DLT

in domains such as the Internet of Things (IoT), fi-

nance, and supply chain management. However, this

specialization resulted in trade-offs between DLT

characteristics that restrict the suitability of a DLT de-

sign to a particular set of applications [1, 2]. For ex-

ample, a DLT design cannot provide high availability

and a high degree of consistency simultaneously be-

cause a large number of nodes of the ledger, which is

needed for high availability, requires more time and

effort to be synchronized, thereby challenging con-

sistency [1, 2]. Due to the prevalent trade-offs between

DLT characteristics, the improvement of one DLT

characteristic deters another, inhibiting a one-size-fits-

all DLT design suiting all requirements of individual

applications. Trade-offs thus require developers to

choose the best fitting DLT design for their application

[2]. Making careful and well-founded decisions in fa-

vor for an (appropriate) DLT design to develop viable

applications on DLT becomes even more crucial be-

cause technical differences between DLT designs

(e.g., different data structures and consensus mecha-

nisms) impede the ex-post migration of data stored on

one distributed ledger to another [3].

Developers, therefore, need to conduct a compre-

hensive comparison between prospective DLT designs

to assess DLT designs’ suitability for a particular ap-

plication on DLT before starting the actual implemen-

tation. Such comparisons require the operationaliza-

tion of DLT characteristics that is referred to as a pro-

cess of defining the measurement of DLT characteris-

tics to make them understandable, measurable, and

comparable. However, it remains challenging for de-

velopers to compare DLT designs and operationalize

DLT characteristics because DLT synthesizes multiple

techniques of computer science (e.g., cryptography

and distributed databases), which come with individ-

ual operationalizations for characteristics. In addition,

DLT exhibits unique characteristics, such as stale

block rate and smart contract support [1], requiring

new operationalizations. The operationalization of

DLT characteristics must first be clarified to enable

developers conducting comparisons of DLT designs.

Research on DLT in computer science has already

taken different perspectives on the analysis, operation-

alization, and benchmarking of DLT designs, for ex-

ample, in regard to formal verification of consensus

mechanisms (e.g., [4]) and the analysis of DLT de-

signs in different configurations (e.g., [5, 6]). How-

ever, prior research predominantly considers DLT

characteristics related to performance (e.g., [7, 8]) and,

thus, neglects further important characteristics (i.e.,

flexibility, anonymity) and does not allow a holistic

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6297
URI: https://hdl.handle.net/10125/64512
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

comparison of DLT designs. Research on DLT in in-

formation systems deals with the specification of pro-

cesses to support developers in their selection of an ap-

propriate DLT design for an application (e.g., [9, 10]),

among others. However, the presented processes are

often too abstract to compare DLT designs. To con-

duct a comprehensive comparison of DLT designs it

requires the synthesis of the prevalent research streams

on the operationalization of DLT characteristics and

benchmarking DLT designs, and decision support in

the selection of an appropriate design. We ask the fol-

lowing research question (RQ):

RQ: How can DLT designs be compared according

to application requirements prior to implementation?

To answer the RQ we follow two objectives: first

the identification and operationalization of relevant

DLT characteristics and, second, the development of a

process for the comparison of DLT designs. For the

first, we consolidated a set of DLT characteristics that

we deem relevant for applications on DLT and synthe-

sized existing research on benchmarks and operation-

alizations of DLT, distributed databases, and infor-

mation systems. Second, we generated and validated a

process for the comparison of DLT designs with three

prominent use cases.

With our study, we contribute to practice as we en-

able a comprehensive comparison of DLT designs

and, thus, provide decision support for the selection of

a suitable DLT design for viable applications on DLT.

We contribute to research because we synthesize ex-

isting approaches and generate new means for the op-

erationalization of DLT characteristics. Thus, our re-

sults can serve as a foundation for research on the se-

lection of suitable DLT designs for applications.

2. Related research

2.1. Distributed ledger technology

DLT serves as a shared, digital infrastructure for

applications (e.g., financial transactions) because DLT

enables the operation of an append-only database (re-

ferred to as ledger), which is distributed across multi-

ple storage devices (so-called nodes) in an untrustwor-

thy environment [11]. Each node maintains a local rep-

lication of the data stored on the ledger. An untrust-

worthy environment is characterized by the arbitrary

occurrence of Byzantine failures [12] such as crashed

or (temporarily) unreachable nodes, network delays,

and malicious behavior of nodes (i.e., issuing wrong

information). In DLT, data is appended to the ledger

through transactions and is stored in a chronologically-

ordered sequence. Each transaction contains meta-data

(e.g., receiver address, timestamp) and a digital repre-

sentation of certain, tokenized assets or program code

of a smart contract. A tokenized asset is a digital rep-

resentation of an asset (e.g., coins) in a structured data

format (token), which can be transferred using trans-

actions. When a node receives a new transaction, the

transaction is validated. Valid transactions are for-

warded to all adjacent nodes, which also validate and

forward the transaction subsequently.

Because all nodes of a distributed ledger maintain

a local replication of the ledger, all nodes must be syn-

chronized and agree on a common state of the distrib-

uted ledger to reach consistency. For this purpose, a

consensus mechanism is employed [13]. A consensus

mechanism is used to manage the negotiation between

nodes, which eventually agree on a common replica-

tion of the ledger. Once appended, data can hardly be

altered or removed anymore.

2.2. Comparison of DLT designs

The comparison of DLT designs requires taking

both a technical perspective considering DLT charac-

teristics, such as fault tolerance or throughput, and an

economical perspective considering costs and time for

software development. Therefore, we first present re-

lated research in benchmarking DLT characteristics.

Second, we present related research on supporting de-

velopers to select a suitable DLT design in order to

avoid, for example, high switching costs. Benchmark-

ing forms a measurement of a (non-productive test)

system at a specific point in time [14] and allows for

the comparison of systems in artificially created sce-

narios. To date, DLT benchmarking predominantly fo-

cuses on DLT characteristics related to performance

and security (e.g., throughput, network partitioning)

[5, 15], specific use cases [16], or private DLT designs

[17]. Still, such approaches do not allow for holistic

benchmarking of DLT designs because they do not

consider DLT characteristics such as availability or

cost. Since DLT incorporates multiple domains of

computer science (i.e., databases, cryptography, infor-

mation systems), DLT benchmarking must also con-

sider extant research in these disciplines.

Database benchmarks include characteristics such

as transaction speed and consistency. Meanwhile, in-

dustry standards have been established for database

benchmarks with a focus on transaction execution,

performance, and scalability (e.g., TPC-H). While

these operationalizations might be used for certain

DLT characteristics, database benchmarks do not

cover several unique DLT characteristics (e.g., confir-

mation latency, fault tolerance).

Extant research in cryptography already provides

operationalizations for characteristics related to hash-

ing or public-key encryption, which are substantial for

DLT. From the performance perspective, for example,

Page 6298

time complexity of such encryption algorithms is an

important criterion to assess. From the security per-

spective, the collision resistance of hashing algorithms

is a common criterion to validate a hashing algorithm

against pre-image attacks [18]. Although the opera-

tionalization of cryptographic procedures is useful to

measure in DLT, these operationalizations serve only

one (research) domain DLT draws from.

Related research on decision support to find an ap-

propriate DLT design is still in its infancy. There are

already approaches that support the decision of using

DLT or not (e.g., [10]) and several classifications of

DLT design have been proposed to make DLT and its

characteristics better comprehensible for developers

(e.g., [19]). However, such processes do not consider

the operationalization of DLT designs and, thus, are

only applicable to DLT on a limited scale.

3. Method

We applied a four-step research approach. First,

we reviewed the extant literature on DLT to generate

a preliminary set of characteristics, which are relevant

for DLT design comparison (e.g., [1, 22]). Second, we

searched operationalizations of the respective DLT

characteristics in extant literature. Third, we evaluated

the suitability of DLT characteristics and correspond-

ing operationalizations for the comparison process fol-

lowing well-known IT benchmarking requirements

and quality criteria for metrics (e.g., [14, 20, 21, 23];

cf. Table 1 and Table 2). Finally, we generated a DLT

comparison process and evaluated its usefulness using

three use cases and five DLT designs (i.e., Ethereum,

Hyperledger Indy, IOTA, Tezos and Hashgraph).

3.1. Selecting suitable characteristics for the

comparison of DLT designs

To identify candidate DLT characteristics for our

comparison process, we built on our prior research on

identifying and clustering DLT characteristics [1, 24,

25], leading to a set of 37 DLT characteristics. More-

over, we reviewed further research articles and white-

papers on DLT characteristics (e.g., [1, 19, 26]) and on

DLT benchmarking (e.g., [22]), which led to a final set

of 50 DLT characteristics as candidates for the com-

parison process. We classified these DLT characteris-

tics into qualitative and quantitative sub-groups to

conduct a more structured search for operationaliza-

tion approaches. As a next step, we performed a fo-

cused literature search for each DLT characteristic to

identify potential operationalizations in DLT research

and related research streams (i.e., databases, cryptog-

raphy, information systems). In particular, we

searched in scientific databases, including IEEE

Xplore, EBSCOHost, ACM Digital Library, and

Proquest. For each DLT characteristic, we created a

unique search string comprising the name of the DLT

characteristic (i.e., scalability) and synonyms for op-

erationalization (i.e., benchmarking, metrics, meas-

urement). We reviewed the resulting research articles

and noted proposed operationalizations for each char-

acteristic. The identified operationalizations can be

classified into three different categories: First, opera-

tionalizations found in the (non-) scientific literature

on DLT that could directly be inherited into the com-

parison process (e.g., operationalizations for con-

sistency or confirmation latency). Second, operation-

alizations found in related domains that needed to be

adapted to fit the DLT context, such as operationaliza-

tions for developer support, scalability, or availability.

Lastly, we were left with four DLT characteristics

(i.e., traceability, transaction content transparency),

where no applicable operationalizations were found.

For these DLT characteristics, we developed new met-

rics complying with the criteria from Table 2.

To assess whether identified DLT characteristics

are suitable for DLT design comparison, we evaluated

whether they fulfill the requirements for IT bench-

marks (cf. Table 1) and whether corresponding opera-

tionalizations comply with requirements for quality

metrics (cf. Table 2). For more information see “Ex-

clusion Methodology” in the supplementary online

material (https://bit.ly/2klPK9v). First, we investi-

gated if identified operationalizations are consistent.

Table 1. Summary of requirements for IT benchmarking [14, 20, 21]
Requirement Description

Economic Efficiency It must be economically affordable to run the benchmark.

Fairness Fairness means that a benchmark should treat every system under test fairly and equally and should not make assumptions

on the system’s features.
Portability It should be easy to implement the benchmark on many different systems and architectures.
Relevance The benchmark should focus on typical operations within that problem domain.
Reproducibility Reproducibility implies that running the same benchmark multiple times will yield similar results, meaning that a certain

degree of determinism is required.
Simplicity The benchmark must be understandable, otherwise, it will lack credibility. A key aspect is the presence of meaningful and

expressive metrics.
Scalability The benchmark should apply to small and large computer systems. It should be possible to scale the benchmark up to larger

systems and to parallel computer systems as computer performance and architecture evolve.

Page 6299

https://bit.ly/2klPK9v
https://bit.ly/2klPK9v

We excluded 17 DLT characteristics (i.e., governance,

non-repudiation, interoperability) because a consistent

output of identified operationalizations could not be

guaranteed as, for instance, the operationalizations re-

quire a subjective view on qualitative DLT character-

istics. For example, we excluded the DLT characteris-

tic compliance because a metric that operationalizes

compliance would have a strongly varying output de-

pending on the particular regulations, thereby threat-

ening consistency. As a next step, we excluded five

DLT characteristics (e.g., incentive mechanism) that

did not follow the high-resolution criteria of quality

metrics (cf. Table 2). The remaining DLT characteris-

tics fulfill the requirements for quality metrics, includ-

ing correlation, discriminative power, and tracking. As

the last step, we examined if the final set of DLT char-

acteristics fulfills all requirements for IT benchmark-

ing (cf. Table 1). We removed eight DLT characteris-

tics that did not comply with the relevance criteria,

leading to a final set of 20 relevant DLT characteristics

for the comparison process. For example, block crea-

tion interval was excluded because it is expressed in

throughput and stale block rate [27], which can be di-

rectly mapped to application requirements.

3.2. Comparison process development

We grounded the development of a comparison

process on previous research of benchmarking pro-

cesses in the IT field (e.g., [28, 29]). We also drew

from extant research on benchmark process develop-

ment (e.g., [29]) and adapted it to the field of DLT un-

der consideration of the requirements depicted in Ta-

ble 1. We used [29] as a basic approach for a bench-

marking process and adapted it in two discussion

rounds with researchers to fit the DLT context while

complying with the requirements from Table 1. Dur-

ing this adaptation, the important core steps of the

comparison process were identified, adapted and en-

hanced to our use case. The individual steps were then

renamed to keep consistent terminology. We showed

the usefulness of the comparison process by evaluating

the process in three prominent use cases in the field of

DLT: cryptocurrency, IoT, and identity management.

We selected these use cases because they form a high

percentage of identified DLT use cases in research

[30] and currently worked on by large companies [31].

For each use case, we applied the comparison process

and included five strongly different DLT designs,

which have been developed for different purposes:

Ethereum as a general-purpose blockchain, Hashgraph

as a public multi-purpose DLT design, IOTA with a

focus on IoT, Hyperledger Indy for identity manage-

ment, and Tezos for strong governance to ensure a

wide variety of different ledgers and to show the use-

fulness of the process for different DLT designs. We

chose these DLT designs because they strongly differ

in the used data structures (e.g., Hashgraph and IOTA

follow the concept of transaction-based, directed acy-

clic graph instead of a linked chain of blocks like in

Ethereum, Hyperledger, and Tezos), the applied con-

sensus mechanisms (e.g., IOTA uses the Tangle and

Ethereum relies on Proof-of-Work), and in their per-

missioning (Ethereum as a permissionless DLT de-

signs and Hyperledger Indy as permissioned DLT de-

sign). Thus, we show that the developed operationali-

zations are applicable to a variety of DLT designs and

reflect their individual strengths.

4. Results

4.1. DLT characteristics for the comparison

4.1.1. Flexibility. Flexibility incorporates the possibil-

ities offered by a DLT design for maintenance and fur-

ther development [1]. The purpose of tokens (F1) can

be classified into achieving three different objectives:

payment tokens (e.g., Bitcoin), utility tokens (e.g.,

Filecoin), and security tokens (e.g., tZERO). Smart

contract support (F2) is a qualitative characteristic that

can be mapped to a nominal scale: either a DLT design

offers Turing-complete, Turing-incomplete, or no

smart contracts.

4.1.2. Institutionalization. Institutionalization de-

scribes the embedding of concepts and artifacts (here

DLT) in social structures. Developer support (I1) is

mainly driven by the size of the developer community

currently dealing with a particular DLT design. There-

fore, we operationalize developer support as the num-

ber of active developers. A developer is considered ac-

tive if she has at least one commit to a DLT design

core (e.g., Ethereum Protocol) or a project related to a

Table 2. Summary of requirements for quality metrics [14, 23]
Requirement Description

Consistency The output of the metric should be consistent. A monotonic function is often required.
Correlation There should be a (not necessarily linear) correlation between the dimension under observation and the metric output.
Discriminative

Power
The metric should accurately display differences of parameter levels and especially differentiate between high and low pa-

rameter levels.
High resolution The metric should have a large number of possible output values and should avoid unnecessary aggregation.
Tracking The metric should build on the current state of the system.

Page 6300

DLT design (e.g., an application using the DLT de-

sign) on GitHub during the last three months. Liability

(I2) is classified as a qualitative characteristic that we

map to a nominal scale with binary values existence of

or non-existence of an enterprise organization for the

purpose of operationalization.

4.1.3. Anonymity. Anonymity describes the degree to

which individuals are not identifiable within a set of

users [1]. Node verification (LA1) is predominantly

concerned with granting or revoking permissions for

nodes. Thus, we mapped node verification to the DLT

design types public or private to consider read permis-

sions. For write permissions, we distinguish between

permissioned and permissionless DLT designs.

For traceability (LA2), we chose three distinct val-

ues: publicly-viewable transfers (e.g., in Bitcoin); ob-

fuscated transfers (e.g., using mixing [32]); not trace-

able transfers (e.g., in ZCash). For transaction content

transparency (LA3) we chose a binary value that dis-

tinguishes between data stored in plain text or en-

crypted.

4.1.4. Performance. Performance includes DLT char-

acteristics regarding the accomplishment of a given

task measured against standards of accuracy, com-

pleteness, costs, and speed [1] such as confirmation la-

tency, throughput, and scalability. Confirmation la-

tency (P1) refers to the period required to append a

minimum number of blocks to the distributed ledger

that must at least succeed a certain block b to assure

that b cannot be altered anymore (e.g., [33]). We oper-

ationalize confirmation latency (P1) as duration until a

transaction is seen as finalized.W

For scalability (P2), we focus on horizontal scala-

bility (cf. [17]), which is operationalized by changes

to throughput (P3) and mean transaction latency

(MTL) when the number of validating nodes (de-) in-

creases. For operationalization, we use p-scalability

[34] (cf. formula 1), which compares two differently

scaled system levels k1 and k2 according to the power

metric (cf. formula 2) and scaling cost [34]. We relay

this concept to DLT by excluding the cost factor and

replacing the mean delay with the mean transaction la-

tency (MTL) (cf. [17]).

Table 3. DLT characteristics and their operationalization following [1, 8, 22]
* DLT Chars.** Definition Operationalization

F
le

x
ib

il
it

y
 Purpose of the To-

kens (F1)

The purpose and flexibility in usage of the provided tokens

of a DLT design. {

𝐸𝑞𝑢𝑖𝑡𝑦 𝑇𝑜𝑘𝑒𝑛
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑇𝑜𝑘𝑒𝑛

𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑇𝑜𝑘𝑒𝑛

Smart Contract Sup-

port (F2)

The level of how well smart contracts are supported by a

DLT design. {
𝑇𝑢𝑟𝑖𝑛𝑔 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒

𝑇𝑢𝑟𝑖𝑛𝑔 − 𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒
𝑁𝑜𝑛𝑒

In
st

it
u

ti
o

n
a

l.
 Developer Support

(I1)

The existence of documentation, interaction platforms such

as forums, or direct contact to the team developing the dis-
tributed ledger for questions and issues related to the devel-

opment of applications integrating DLT as well as program-

ming tools and interfaces.

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟𝑠

Liability (I2) The existence of an organization that is responsible for the
maintenance of a DLT design.

 {
𝐿𝑖𝑎𝑏𝑙𝑒 𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑖𝑠𝑡𝑠

𝑁𝑜 𝑙𝑖𝑎𝑏𝑙𝑒 𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛

A
n

o
n

y
m

it
y

Node verification

(LA1)

The extent to which new nodes can join the distributed

ledger without being verified.
{

𝑃𝑢𝑏𝑙𝑖𝑐, 𝑢𝑛𝑝𝑒𝑟𝑚𝑖𝑠𝑖𝑠𝑜𝑛𝑒𝑑 𝐷𝐿𝑇 𝑑𝑒𝑠𝑖𝑔𝑛
 𝑃𝑢𝑏𝑙𝑖𝑐, 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑒𝑑 𝐷𝐿𝑇 𝑑𝑒𝑠𝑖𝑔𝑛
𝑃𝑟𝑖𝑣𝑎𝑡𝑒, 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑒𝑑 𝐷𝐿𝑇 𝑑𝑒𝑠𝑖𝑔𝑛

𝑃𝑟𝑖𝑣𝑎𝑡𝑒, 𝑢𝑛𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑒𝑑 𝐷𝐿𝑇 𝑑𝑒𝑠𝑖𝑔𝑛

Traceability (LA2) The level to which the transfer of an asset can be traced

chronologically on a distributed ledger. {

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 𝑎𝑟𝑒 𝑝𝑢𝑏𝑙𝑖𝑐𝑙𝑦 𝑡𝑟𝑎𝑐𝑒𝑎𝑏𝑙𝑒
𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 𝑎𝑟𝑒 𝑜𝑏𝑓𝑢𝑠𝑐𝑎𝑡𝑒𝑑 𝑎𝑛𝑑 ℎ𝑎𝑟𝑑𝑙𝑦 𝑡𝑟𝑎𝑐𝑒𝑎𝑏𝑙𝑒

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑡𝑟𝑎𝑐𝑒𝑑

Transaction Content

Transparency (LA3)

The ability to publicly view an account’s holdings and trans-

actions’ contents on a distributed ledger.
 {

𝑃𝑙𝑎𝑖𝑛 𝐶𝑜𝑛𝑡𝑒𝑛𝑡
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝐶𝑜𝑛𝑡𝑒𝑛𝑡

P
e
r
fo

r
m

a
n

ce

Confirmation La-

tency (P1)

The average time until enough blocks (or transactions) are

added to the distributed ledger so that the likelihood of tam-
pering of a previously added block or transaction is below a

certain threshold.

𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠
∗ 𝐵𝑙𝑜𝑐𝑘 𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

Scalability (P2) The capability of a DLT design to handle an increasing
amount of workload or its potential to be enlarged to accom-

modate that growth.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑘2)

𝑀𝑇𝐿 (𝑘2)

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑘1)

𝑀𝑇𝐿 (𝑘1)

 𝑀𝑇𝐿 > 0, 𝑘1 < 𝑘2

Throughput (P3) The number of transactions validated and appended to the
ledger in a given time interval.

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

* * DLT Property ** DLT Characteristics

Page 6301

(1) 𝑝 − 𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑘2)
𝑀𝑇𝐿(𝑘2) ∗ 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑘2)

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑘1)

𝑀𝑇𝐿(𝑘1) ∗ 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑘1)

(2) 𝑝𝑜𝑤𝑒𝑟 =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑀𝑇𝐿

In (1), throughput behaves proportionally to scala-

bility, while transaction latency behaves anti-propor-

tionally to scalability. For example, if a DLT scales up

well, one would expect throughput to increase and

transaction latency to decreases. This behavior is rep-

resented in our metric by placing throughput in the nu-

merator of the metric and the transaction latency in the

denominator. To form a score for scalability, we com-

pare two different horizontal scaling levels k1 and k2

with different numbers of participating nodes as our

metric. We assume MTL to never converging to zero.

Usually, a scalability coefficient equal to or larger than

1 reflects good scalability, while a scalability coeffi-

cient close to zero indicates bad scalability. The quo-

tient of the data from the actual period is compared to

the performance data quotient from the previous pe-

riod to form the scalability score which is then com-

puted into a final scalability score (P2).

4.1.5. Security. Security refers to the preservation of

confidentiality, integrity, and availability of infor-

mation. Availability (S1) is operationalized as proba-

bility and considers the Meant Time To Failure

(MTTF) and Mean Time To Repair (MTTR) [35].

MTTF is the period a distributed ledger is expected to

correctly operate. MTTR is the required period to re-

cover the distributed ledger from a failure. This sum is

equal to the Mean Time Before Failure (MTBF) [35].

In the field of DLT, we refer MTTR and MTTF to the

full distributed ledger instead of particular nodes.

Consistency (S2) refers to storing the identical rep-

lications of the ledger on each node at the same time

[36]. In Hyperledger Caliper, transaction latency is a

metric to measure consistency as the period for a trans-

action’s effect to be available on all nodes [8]. We

adopt this interpretation and measure the period be-

tween transaction issuance and transaction confirma-

tion. We include it as a criterion in form of an average

of N measurements at different times and states of the

distributed ledger. Fault tolerance (S3) is the ability of

a distributed ledger to correctly operate in the presence

of failures [35]. We operationalize fault tolerance as

the changes in throughput and transaction latency (TL)

during node failure (cf. [17]). Node failure is the stop-

ping of a node (crash failure), network delay, or ran-

dom responses due to corrupted messages [17].

Level of decentralization (LoD) (S4) expresses the

ratio of the number of independent validating nodes

(VNs) and the number of validating node operators

(VNOs). While VNs represent validating nodes,

VNOs represent an individual or organization, who

maintains the VNs (e.g., a mining pool). To include

permissioned DLT designs in our operationalization,

Table 3 cont. DLT characteristics and their operationalization following [1, 8, 22]
* DLT Chars.** Definition Operationalization

S
e
c
u

ri
ty

Availability (S1) The probability that a system is operating correctly at an arbi-

trary point in time.

𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
=

𝑀𝑇𝑇𝐹

𝑀𝑇𝐵𝐹

Consistency (S2) The state that all nodes store the same data in their ledger at the

same time. ∅ 𝑇𝐿 =
1

𝑁
∗ ∑ 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝑡)

𝑁

𝑡=1

− 𝑆𝑢𝑏𝑚𝑖𝑡 𝑇𝑖𝑚𝑒(𝑡)

Fault Tolerance (S3) The ability of a distributed ledger to correctly operate in the

presence of (hardware or software) failures.
{

∆ 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑑𝑢𝑟𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
 ∆ 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑑𝑢𝑟𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

Level of Decentrali-

zation (S4)

The number of independent node controllers participating in

transaction validation and consensus finding.

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑁𝑂𝑠

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑁𝑠
∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑁𝑂𝑠

Network Size (S5) The number of validating nodes of a distributed ledger that

keep a full replication of the ledger.
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑙𝑙 𝑛𝑜𝑑𝑒𝑠

Reliability (S6) The period of time during which a system is correctly function-
ing. 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡) = 𝑒(−

𝑡
𝑀𝑇𝑇𝐹)

Stale Block Rate

(S7)

The number of blocks in a defined period of time that has been

mined but not added to the distributed ledger. A stale block

forms a fork until it is resolved by the DLT design’s fork reso-
lution rule.

 𝑚𝑖𝑛𝑒𝑑 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑎𝑑𝑑𝑒𝑑 𝑏𝑙𝑜𝑐𝑘𝑠

𝑙𝑎𝑠𝑡 1000 𝑏𝑙𝑜𝑐𝑘𝑠

Strength of Encryp-

tion (S8)

The level of security of the applied cryptographic approach. 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑢𝑠𝑒𝑑 ℎ𝑎𝑠ℎ𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

U
sa

b
il

it
y
 Censorship Re-

sistance (U1)

The equal right of any user of the distributed ledger to submit

transactions that are not altered or dropped by a third party.

𝐿𝑜𝐷

𝑉𝑁𝑂𝑠
=

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑁𝑂𝑠

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑁𝑠

Cost (U2) Costs related to the implementation and usage of a DLT design,

including software development and operational costs.

∅ 𝐻&𝐸 𝐶𝑜𝑠𝑡

𝑀𝑜𝑛𝑡ℎ
+ ∅𝑇 − 𝑐𝑜𝑠𝑡 ∗

∅ 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑀𝑜𝑛𝑡ℎ

+
∅ 𝑀&𝑆 𝐶𝑜𝑠𝑡

𝑀𝑜𝑛𝑡ℎ

 * DLT Property ** DLT Characteristics VN: Validating Node VNO: Validating Node Operator

Page 6302

we multiply the ratio of VNs to VNOs with the number

of VNs to correctly scale it to the network size and to

differentiate between permissioned DLT designs with

a lower LoD score and permissionless networks with

a higher LoD score due to a higher number of VNOs.

Network size (S5) describes the number of nodes in

a distributed ledger that stores a full replication of the

ledger, considering only full network nodes that keep

a full replication of the ledger [1]. Thus, we operation-

alize network size as the number of full nodes in a dis-

tributed ledger.

Reliability (S6) refers to the period during which a

distributed ledger is correctly functioning. In DLT, the

component that may fail refers to the complete distrib-

uted ledger [35]. The operationalization yields a prob-

ability that the system produces a correct output up to

a time t [35]. For our benchmarking process, we intro-

duce the estimated project duration t for all DLT de-

signs and require a certain probability. Due to the little

occurrences of system failures of DLT designs, this

metric is assumed to be close to one, even for larger t.

Stale blocks impact security and performance be-

cause they lead to inconsistency between nodes

through forks. The stale block rate (S7) is operation-

alized as a percentage of the mined but not included

blocks measured over the last 1000 blocks [7]. Non-

forking consensus mechanisms (e.g., Practical Byzan-

tine Fault Tolerance) get the score of zero.

The strength of encryption refers to the level of se-

curity concerning the application of authentication-re-

lated cryptographic primitives (e.g., hashing algo-

rithm). For the benchmarking process, we use the col-

lision resistance of the applied hashing algorithm in

the DLT design, which refers to the ease in guessing a

pre-image for a hash value. A Birthday attack is a

probabilistic approach of guessing pre-images exploit-

ing the fixed degree of permutations [37]. A Birthday

attack evaluates a hash function with n input bits and

m output bits for randomly-selected inputs until two

matching outputs are found. The number of pairs (p)

in-between inputs which may yield to a collision

grows quadratically with the number of trials l in a

Birthday attack (cf. formula 3). As every pair of inputs

is a chance for a matching output, finding a collision

becomes more and more likely. Using a Birthday at-

tack, it is possible to find a collision of two different

inputs with Formula 4 or better time attack (tattack) [37]

leading to Formula 5 as the security in (output-) bits

(sbit) of h.

(3) 𝑝 =
𝑙 ∗ (𝑙 − 1)

2
 (4) 𝑡𝑎𝑡𝑡𝑎𝑐𝑘 = 2

𝑚
2 (5) 𝑠𝑏𝑖𝑡 =

𝑚

2

4.1.6. Usability. Usability refers to the extent to which

a DLT design can be used by specified users to achieve

specified goals with respect to effectiveness, effi-

ciency, and satisfaction in a context of use. Censorship

resistance (U1) describes the probability that a party

can strongly influence the acceptance or refusal of

transactions with a reasonable effort. Little censorship

resistance comes from a low LoD [1]. Therefore, we

operationalize censorship resistance as a probability

dependent on LoD. A high LoD represents high cen-

sorship resistance, which the metric expresses with a

score close to 1.0.

Cost (U2) relates to the implementation and use of

a DLT design. To operationalize cost we draw from a

Total Cost of Ownership (TCO) approach and adjust it

to DLT [38]. Our TCO metric employs the sum of av-

erage Hardware and Electricity (H&E) cost, the aver-

age cost for transactions (e.g., transaction fees), and

the average Maintenance and Servicing (M&S) cost,

all computed per month. Costs for research and human

resources are excluded to keep the calculation feasible

and because they are assumed to be similar for each

DLT design since research and hiring of quality per-

sonal needs to be done for all DLT designs. H&E costs

include the cost for all needed hardware to set up all

necessary components to participate in the distributed

ledger to the extent required by the use case, as well as

the accumulated energy and resource costs of mining

(if mining is performed). M&S costs cover all mainte-

nance costs to keep the network operational and all

services used within or outside the distributed ledger.

4.2. Comparison process for DLT designs

We propose a seven-step process for the holistic

comparison process of DLT designs: use case defini-

tion, requirements definition, DLT design selection,

boundary condition examination, data collection,

analysis, and decision making (cf. Figure 1). In the fol-

lowing, we illustrate the usefulness of the comparison

process for an exemplary use case in IoT. For parsi-

moniousness, we only consider the DLT characteris-

tics consistency (S2) and throughput (P3), which are

consolidated in Table 4. Please refer to “Use Cases” in

the supplementary online material for the full compar-

ison (https://bit.ly/2klPK9v).

First, we define the use case and functional re-

quirements for the application during the use case def-

inition. To assess the usefulness of DLT we include

the process of [9] into our comparison process, which

we adapt to DLT in general. The process serves as a

pre-filter to prevent developers from choosing an un-

suitable technology (e.g., DLT vs. centralized data-

base) beforehand. If DLT has been found suitable for

the use case, the process continues.

Page 6303

https://bit.ly/2klPK9v
https://bit.ly/2klPK9v
https://bit.ly/2klPK9v

Second, the pursued values of the individual met-

rics are ascertained as forming criteria of the process

in requirements definition. In the IoT use case, con-

sistency (S2) should be fairly low (< 2 s) because

many IoT networks share and handle real-time sensor

data. IoT networks usually incorporate a large number

of devices and sensors. Therefore, we require through-

put (P3) to be at least 1,000 tps.

Third, the DLT design selection requires to gener-

ate a set of possibly suitable DLT designs for the use

case. A survey on the application of DLT designs in

similar use cases should lead to a set of possible DLT

designs for the following evaluation process. This set

should have a cardinality of at least two DLT designs

but is not restricted by an upper limit. For our exem-

plary use case, we select a set of five DLT designs:

Ethereum, Hyperledger Indy, Tezos, and IOTA, Hash-

graph.

Fourth, during the boundary condition examina-

tion potential compliance, legal, and maturity risks of

members of the previously defined set of possible

DLT designs are considered. For example, newly de-

veloped DLT designs with an error-prone code base

that are hardly ready to use may be examined and then

excluded from the set of candidates. In this step, an

evaluation of previously excluded qualitative charac-

teristics can be made. All DLT designs, which do not

comply with these factors should be excluded from the

set. If too many ledgers are being excluded in this step,

a step back to DLT design selection towards more DLT

design candidates may be necessary. The topics ease

of use, dependencies on third parties (e.g., an enter-

prise, a foundation), auditability restrictions, or data

ownership considerations can be examined to exclude

additional DLT design candidates if they are consid-

ered important for the use case. After reviewing possi-

ble legal, compliance and maturity risks, no hindering

boundary conditions (e.g., prohibiting data-security

legislation, a non-mature code framework) were

found. Therefore, we deem all DLT design candidates

mature and suitable for the exemplary IoT use case.

Fifth, after all factors are included and a final set

of DLT design candidates is generated, we conduct a

data collection to use the developed operationaliza-

tions and to calculate the corresponding metrics. For

our example, we gathered data on transaction latency

and transactions per second for every DLT design out

of the set of DLT design candidates from monitoring

websites (e.g., [39]) and existing studies (e.g., [17,

40]) to calculate the values for consistency (S2) and

throughput (P3).

Sixth, we compose a table to summarize the found

results in the analysis step. The table includes all cri-

teria in the columns and lists all DLT design candi-

dates in the rows. For each DLT design candidate,

every criterion is evaluated on whether the application

requirement is fulfilled by the respective value of a

DLT design candidate. If the calculated value of the

metric fulfills the particular application requirement,

we rate it 1. If a criterion is only partially fulfilled or

the application requirement is very close to the actual

value of the DLT design, we rate it 0.5. Otherwise, the

table entry is rated 0.

Finally, the decision making is performed by sum-

ming up the ratings for each DLT design candidate,

leading to a total score. The DLT design with the high-

est score represents the assumed best suitable DLT de-

sign for the application on DLT. In the exemplary IoT

use case, Hyperledger Indy scored best (cf. Table 4).

Figure 1. Sequential steps of the process to compare DLT designs

Table 4. Evaluation of consistency and
throughput inside the process to compare

DLT designs

Consistency

(< 2 s)

Throughput

(> 1000 tps)

DLT Design Candidates

V
a

lu
e

[s
]

S
c
o

re

V
a

lu
e

[t
p

s]

S
c
o

re

∑

Ethereum <15 0 20 0 0

Hashgraph n.A.2 0 > 10,000 1 1

Hyperledger Indy <21 1 >3,500 1 2

Tezos <60 0 40 0 0

IOTA n.A.2 0 500-800 0.5 0.5

1: Transaction latency is taken from a Hyperledger Fabric eval-

uation. Since both DLT designs employ a similar PBFT consen-
sus algorithm with low latencies the data is comparable.

2: Transaction confirmation is non-deterministic

DLT Design
Select ion

Data
Collect ion

Boundary
Condit ion

Examinat ion

Analysis
Decision
Making

Use Case
Definit ion

Requirements
Definit ion

Enough DLT candidates?

Yes

No

Is DLT useful?

No

Yes

Page 6304

5. Discussion

In this work, we present a comprehensive overview

of DLT characteristics and their corresponding opera-

tionalization that can be used as criteria for a holistic

comparison. Furthermore, we generated a first ap-

proach for a structured comparison process including

research from DLT, distributed databases, and com-

puter science. The validation of the generated process

for comparison indicates its validity because the cal-

culated suitability ranking is coherent with the in-

tended purposes of the included DLT design candi-

dates. For each use case, the process proposed a suita-

ble DLT design for which proof of concepts in the re-

spective fields have already been developed.

We regard the proposed operationalization as a

first approach for the operationalization of DLT de-

signs for a holistic comparison. Due to the strong focus

of the included criteria for performance and security,

the process will probably perform sufficiently for DLT

designs that are designed for a similar purpose.

5.1. Implications

The presented operationalization of DLT charac-

teristics supports a better comparison of DLT designs

and helps to quantify their advantages. Using the op-

erationalizations, the presented process supports the

selection of a suitable DLT design for applications on

DLT. The process facilitates and structures decision

making for choosing a DLT design, which avoids un-

necessary overhead and improves decision making.

The developed process synthesizes extant research

on DLT from research in computer science as we eval-

uated different operationalizations for DLT character-

istics and present a set of applicable operationaliza-

tions for selected criteria. Through the selection of op-

erationalizations applicable to DLT characteristics, we

support research on the identification of a suitable

DLT design in information systems. The presented op-

erationalizations of DLT characteristics support the

quantification of dependencies between DLT charac-

teristics, which broadens the scope for a comprehen-

sive analysis of DLT designs [33] and helps to reveal

the weaknesses of current DLT designs.

5.2. Limitations and future research

As the selection and operationalization of DLT

characteristics are based primarily on literature and the

presented process has only been evaluated in three use

cases, we cannot generalize the presented process

without limitation. As not all DLT characteristics have

a corresponding characteristic in research on database

or distributed systems monitoring (e.g., stale block

rate), we developed own operationalizations. How-

ever, these measures have not been evaluated in the

field, yet. Some operationalization concepts are re-

stricted to or have a higher significance with block-

chain-based DLT designs. During the data collection

for the validation of the process, it became obvious

that DLT and especially some of the chosen DLT de-

signs form a fairly new research topic, thus discover-

ing a need for additional research and practical meas-

urement of DLT characteristics. This work relies on

previous research on DLT characteristics [1, 24].

Thus, we also used the DLT property usability accord-

ing to the examined literature.

In future research, the presented comparison pro-

cess should be applied and evaluated in the field to as-

sess its validity and overcome potential challenges in

its usefulness. Additionally, the scoring model and the

use of weights for the respective importance of DLT

characteristics should be investigated. Since several

DLT characteristics are not yet operationalizable, it is

of high interest to generate new operationalizations for

such DLT characteristics to obtain a holistic view of

DLT designs and their benefits and potential con-

straints. Since the importance of cross-chain technol-

ogy in DLT increases [25], additional metrics and op-

erationalizations should be investigated and developed

in order to make different cross-chain technology ap-

proaches comparable with each other.

6. References

[1] Kannengießer, N., S. Lins, T. Dehling, and A. Sunyaev,

“What Does Not Fit Can be Made to Fit! Trade-Offs in Dis-

tributed Ledger Technology Designs”, 52nd Hawaii Inter-

national Conference on System Sciences, (2019).

[2] O’Donoghue, O., A.A. Vazirani, D. Brindley, and E.

Meinert, “Design Choices and Trade-Offs in Health Care

Blockchain Implementations: Systematic Review”, Journal

of Medical Internet Research 21(5), 2019, pp. e12426.

[3] Nelson, J., M. Ali, R. Shea, and M.J. Freedman, “Extend-

ing Existing Blockchains with Virtualchain”, 2016.

https://www.zurich.ibm.com/dccl/papers/nelson_dccl.pdf

[4] Pass, R., and E. Shi, “The Sleepy Model of Consensus”,

Advances in Cryptology – ASIACRYPT 2017, (2017), 380–

409.

[5] Eyal, I., and E.G. Sirer, “Majority is not Enough: Bitcoin

Mining is Vulnerable”, In Financial Cryptography and Data

Security. 2014.

[6] Weber, I., V. Gramoli, A. Ponomarev, et al., “On Avail-

ability for Blockchain-Based Systems”, 2017 IEEE 36th

Symposium on Reliable Distributed Systems, (2017), 64–73.

[7] Gervais, A., G.O. Karame, K. Wüst, V. Glykantzis, H.

Ritzdorf, and S. Capkun, “On the Security and Performance

of Proof of Work Blockchains”, Proceedings of the 2016

Page 6305

ACM SIGSAC Conference on Computer and Communica-

tions Security, (2016), 3–16.

[8] Hyperledger Performance and Scale Working Group,

“Hyperledger Blockchain Performance Metrics”, 2018.

https://www.hyperledger.org/wp-content/up-

loads/2018/10/HL_Whitepaper_Metrics_PDF_V1.01.pdf

[9] Lo, S.K., X. Xu, Y.K. Chiam, and Q. Lu, “Evaluating

Suitability of Applying Blockchain”, 2017 22nd Interna-

tional Conference on Engineering of Complex Computer

Systems, (2017), 158–161.

[10] Wüst, K., and A. Gervais, “Do you need a Block-

chain?”, 2017. https://eprint.iacr.org/2017/375.pdf

[11] Zhang, K., and H.-A. Jacobsen, “Towards Dependable,

Scalable, and Pervasive Distributed Ledgers with Block-

chains”, 2018 IEEE 38th International Conference on Dis-

tributed Computing Systems, (2018), 1337–1346.

[12] Lamport, L., R. Shostak, and M. Pease, “The Byzantine

Generals Problem”, ACM Transactions on Programming

Languages and Systems 4(3), 1982, pp. 382–401.

[13] Natoli, C., and V. Gramoli, “The Blockchain Anom-

aly”, 2016 IEEE 15th International Symposium on Network

Computing and Applications, (2016), 310–317.

[14] Bermbach, D., E. Wittern, and S. Tai, Cloud Service

Benchmarking: Measuring Quality of Cloud Services from a

Client Perspective, 2017.

[15] Decker, C., and R. Wattenhofer, “Information propaga-

tion in the Bitcoin network”, IEEE P2P 2013 Proceedings,

(2013), 1–10.

[16] Bott, J., and U. Milkau, “Towards a framework for the

evaluation and design of distributed ledger technologies in

banking and payments.”, Journal of Payments Strategy &

Systems 10(2), 2016, pp. 153–171.

[17] Dinh, T.T.A., J. Wang, G. Chen, R. Liu, B.C. Ooi, and

K.-L. Tan, “BLOCKBENCH: A Framework for Analyzing

Private Blockchains”, ACM International Conference on

Management of Data, (2017), 1085–1100.

[18] Konheim, A.G., Hashing in computer science: fifty

years of slicing and dicing, John Wiley & Sons, Hoboken,

N.J, 2010.

[19] Glaser, F., and L. Bezzenberger, “Beyond Cryptocur-

rencies - A Taxonomy of Decentralized Consensus Sys-

tems”, 23rd European Conference on Information Systems,

(2015), 1–18.

[20] Gray, J., ed., The Benchmark handbook: for database

and transaction processing systems, M. Kaufmann Publish-

ers, San Mateo, Calif, 1991.

[21] Huppler, K., “The Art of Building a Good Benchmark”,

Performance Evaluation and Benchmarking, (2009), 18–30.

[22] Hyperledger Foundation, “Hyperledger Caliper”, 2018.

https://github.com/hyperledger/caliper

[23] Kaner, C., S. Member, and W.P. Bond, “Software En-

gineering Metrics: What Do They Measure and How Do We

Know?”, In METRICS 2004. IEEE CS, (2004).

[24] Kannengießer, N., S. Lins, T. Dehling, and A. Sunyaev,

“Mind the Gap: Trade-Offs between Distributed Ledger

Technology Characteristics”, arXiv:1906.00861 [cs], 2019.

[25] Kannengießer, N., M. Pfister, M. Greulich, S. Lins, and

A. Sunyaev, “Bridges Between Islands: Cross-Chain Tech-

nology for Distributed Ledger Technology”, 53rd Hawaii

International Conference on System Sciences, (2020).

[26] Yli-Huumo, J., D. Ko, S. Choi, S. Park, and K. Smo-

lander, “Where Is Current Research on Blockchain Technol-

ogy?”, PLOS ONE 11(10), 2016, pp. e0163477.

[27] Göbel, J., and A.E. Krzesinski, “Increased block size

and Bitcoin blockchain dynamics”, 2017 27th International

Telecommunication Networks and Applications Conference,

(2017), 1–6.

[28] Ahmed, P.K., and M. Rafiq, “Integrated benchmarking:

a holistic examination of select techniques for benchmarking

analysis”, Benchmarking for Quality Management & Tech-

nology 5(3), 1998, pp. 225–242.

[29] Doll, W.J., X. Deng, and J.A. Scazzero, “A process for

post-implementation IT benchmarking”, Information &

Management 41(2), 2003, pp. 199–212.

[30] Hileman, G., and M. Rauchs, “2017 Global Blockchain

Benchmarking Study”, SSRN Electronic Journal, 2017.

[31] Deloitte, “Breaking blockchain open”, 2018.

https://www2.deloitte.com/content/dam/Deloitte/cz/Docu-

ments/financial-services/cz-2018-deloitte-global-block-

chain-survey.pdf

[32] Liu, Y., X. Liu, C. Tang, J. Wang, and L. Zhang, “Un-

linkable Coin Mixing Scheme For Transaction Privacy En-

hancement of Bitcoin”, IEEE Access 6, 2018, pp. 1–1.

[33] Anceaume, E., T. Lajoie-Mazenc, R. Ludinard, and B.

Sericola, “Safety analysis of Bitcoin improvement pro-

posals”, 2016 IEEE 15th International Symposium on Net-

work Computing and Applications, (2016), 318–325.

[34] Jogalekar, P.P., and C.M. Woodside, “A scalability

metric for distributed computing applications in telecommu-

nications”, In Teletraffic Contributions for the Information

Age. 1997, 101–110.

[35] McClusky, E.J., and S. Mitra, “Fault Tolerance”, In

Computer Science Handbook. Chapman & Hall/CRC, Boca

Raton, Fla, 2004.

[36] Haerder, T., and A. Reuter, “Principles of transaction-

oriented database recovery”, ACM Computing Surveys

15(4), 1983, pp. 287–317.

[37] Goldwasser, S., and M. Bellare, Lecture Notes on Cryp-

tography, Cambridge, Massachusetts, USA, 2008.

[38] Ellram, L.M., “Total cost of ownership: an analysis ap-

proach for purchasing”, International Journal of Physical

Distribution & Logistics Management 25(8), 1995, pp. 4–23.

[39] Etherscan, “Etherscan”, https://etherscan.io/

[40] Nasir, Q., I.A. Qasse, M. Abu Talib, and A.B. Nassif,

“Performance Analysis of Hyperledger Fabric Platforms”,

Security and Communication Networks 2018, 2018, pp. 1–

14

Page 6306

