
1

Mind the Gap: Trade-Offs Between Distributed
Ledger Technology Characteristics

(Working Paper)

Niclas Kannengießer
Institute of Applied Informatics and Formal Description Methods, Karlsruhe Institute of Technology, Karlsruhe,

Germany, niclas.kannengiesser@kit.edu

Blockchain Center EU, University of Kassel, Kassel, Germany

Sebastian Lins
Institute of Applied Informatics and Formal Description Methods, Karlsruhe Institute of Technology, Karlsruhe,

Germany, sebastian.lins@kit.edu

Tobias Dehling
Institute of Applied Informatics and Formal Description Methods, Karlsruhe Institute of Technology, Karlsruhe,

Germany, dehling@kit.edu

Ali Sunyaev
Institute of Applied Informatics and Formal Description Methods, Karlsruhe Institute of Technology, Karlsruhe,

Germany, sunyaev@kit.edu

ABSTRACT

When developing peer-to-peer applications on Distributed Ledger Technology (DLT), a

crucial decision is the selection of a suitable DLT design (e.g., Ethereum) because it is hard

to change the underlying DLT design post hoc. To facilitate the selection of suitable DLT

designs, we review DLT characteristics and identify trade-offs between them. Furthermore,

we assess how DLT designs account for these trade-offs and we develop archetypes for

DLT designs that cater to specific quality requirements. The main purpose of our article is

to introduce scientific and practical audiences to the intricacies of DLT designs and to

support development of viable applications on DLT.

CCS CONCEPTS

•Networks~Network protocols~Application layer protocols~Peer-to-peer protocols

•Software and its engineering~Software creation and management~Designing software~Software design

tradeoffs

KEYWORDS

Blockchain, Distributed Ledger Technology, Peer-to-Peer, Application Development, Suitability, Viability

2

1 Introduction

Distributed ledger technology (DLT) enables the operation of a highly-available, append-only database (a

distributed ledger), which is maintained by physically-distributed storage and computing devices (referred to

as nodes), in an untrustworthy environment. DLT promises to increase efficiency and transparency of

collaborations between individuals and/or organizations based on inherent qualities such as tamper- and

censorship resistance, and democratization of data [1]. As a consequence, an ever-increasing number of

applications on DLT have been developed in various domains, such as supply chain management [2], finance

[3], or health care [4]. In supply chain management, product provenance systems employ DLT, for example,

as a tamper-resistant data storage that is replicated across multiple nodes of collaborating entities in the

supply chain [5,6]. Applications use distributed ledgers as a shared infrastructure that facilitates, for instance,

reliable and tamper-resistant data storage, processing of transactions (e.g., for the transfer of digital assets),

and automation of business processes [7,8]. Each application on DLT builds upon a particular DLT design

(e.g., Ethereum or IOTA) that is defined as an instantiation of a DLT concept (e.g., blockchain) with unique

characteristics [9].

Despite the promising benefits of DLT, past implementations of applications on DLT reveal critical

dependencies between DLT characteristics that result in trade-offs; that is, the improvement of one DLT

characteristic interferes with another DLT characteristic. For example, a trade-off exists between achieving

availability and consistency in distributed ledgers [10]. High availability of a distributed ledger can be

achieved by increasing the number of replications of the ledger. As a consequence, the network of nodes in

the distributed ledger increases, however, this leads to reduced consistency due to message propagation

delays [11]. Given the prevalent trade-offs between DLT characteristics, there will be no one-size-fits-all

DLT design for applications on DLT. Rather, there will be DLT designs that are specialized to fulfill certain

requirements but perform poorly on other requirements (e.g., low throughput, poor scalability, or high cost)

due to drawbacks resulting from DLT-inherent trade-offs [9,12]. It is thus challenging to select suitable DLT

designs for a given application and to assess potential drawbacks for the respective application on DLT.

Making careful and well-founded decisions in favor for a (suitable) DLT design to develop viable

applications on DLT is even more crucial because technical differences between DLT designs (e.g., different

data structures and consensus mechanisms) impede the migration of data between distributed ledgers [13].

In this context, viability refers to applications’ ability to operate over a long period under consideration of

potentially changing requirements or improvements and resulting updates. To understand the trade-offs

between DLT characteristics and their impact on the viability of applications on DLT, a comprehensive

analysis of dependencies between DLT characteristics and resulting trade-offs is required.

While the body of research on DLT was ever increasing in the last decade, related research on DLT

characteristics predominantly focuses on assessing the importance of characteristics for particular use cases

(e.g., cryptocurrencies [14]) and on comparing application requirements with capabilities of selected

distributed ledgers [e.g., 15]. Prior analyses of dependencies between DLT characteristics only consider a

sparse set of DLT characteristics (e.g., integrity or scalability [16,17]). In addition, research on DLT

characteristics and their dependencies is largely scattered across disciplines and needs to be synthesized in

order to obtain a comprehensive understanding of dependencies between DLT characteristics and resulting

trade-offs that limit the applicability of DLT designs to certain applications on DLT. We therefore strive to

answer the following research question:

How do trade-offs between DLT characteristics impact the viability of applications on DLT?

To answer our research question, we applied a three-step research approach. First, we identified prevalent

DLT characteristics by conducting a comprehensive literature review comprising 191 articles, and surveying

DLT experts. Second, we analyzed the identified DLT characteristics in detail to uncover trade-offs in DLT

designs, which were then applied to the most fitting DLT designs. Finally, we consolidated the identified

trade-offs into archetypes and derived implications for applications on DLT.

Our study identified a consolidated list of forty DLT characteristics that are fundamental for assessing the

suitability of DLT designs for applications on DLT, which we grouped into six DLT properties. This

manuscript uncovers and explains twenty-four trade-offs between DLT characteristics and discusses the

3

resulting drawbacks for applications. The identified DLT characteristics and properties range from purely

technical (e.g., strength of cryptography in security) to social (e.g., degree of decentralization in policy),

which highlights the complexity of DLT. Finally, we consolidated our findings into six DLT archetypes that

indicate benefits and drawbacks for applications on DLT resulting from choice and configuration of a DLT

design optimized toward a certain DLT property.

Our work contributes to the development of viable applications on DLT by discussing benefits and drawbacks

of applications on DLT and presenting six archetypes of DLT designs. This work forms a bridge between

currently separated research streams on DLT and forms a foundation for research on suitability assessments

of DLT designs for applications. Our work allows practitioners and researchers to better understand which

drawbacks for applications on DLT result from what configurations of DLT characteristics. Overall, we

contribute to the scientific knowledge base by making it possible to set DLT characteristics into relation with

applications on DLT and vice versa.

The manuscript is structured as follows. First, we introduce the current state of research on DLT and outline

smart contract vulnerabilities and several attacks on distributed ledgers. This knowledge is required to

understand the origins of trade-offs between DLT characteristics and drawbacks for applications on DLT.

Second, we describe the method applied. Third, we present the identified DLT characteristics, the derived

trade-offs between DLT characteristics, and the generated archetypes. Finally, we discuss our principle

findings, summarize the implications for both practice and research, discuss research limitations, and give an

outlook for future research.

2 Research Background and Related Research

2.1 Distributed Ledger Technology

In its essence, DLT serves as a shared, digital infrastructure for applications on DLT (e.g., in financial

transactions [18]) by enabling the operation of a highly available, append-only distributed database (referred

to as distributed ledger) in an untrustworthy environment [19], where separated storage and computing

devices (referred to as nodes) maintain a local replication of the ledger. Nodes are maintained and controlled

by individuals or organizations (referred to as node controllers 1). An untrustworthy environment is

characterized by the arbitrary occurrence of Byzantine failures [20,21], such as crashed or (temporarily)

unreachable nodes, network delays, and malicious behavior of nodes.

In DLT, data is transferred and appended to the ledger in the form of transactions and is stored in a

chronologically-ordered sequence. Each transaction contains meta-data (e.g., transaction recipient or

timestamp) and a digital representation of certain assets (e.g., coins) or program code of a smart contract (see

Section 2.3) [22]. When a node receives a new transaction, the transaction is validated by a proof of

ownership for the digital representation of the asset based on digital signatures and public key cryptography

[22,23].

DLT covers various DLT concepts, DLT designs, DLT properties, and DLT characteristics [9,24] (see Figure

1). DLT concepts describe the basic structure and functioning of DLT designs on a high level of abstraction.

For instance, blockchain is a DLT concept describing the use of blocks that form a linked list. Each block

contains multiple transactions that have been added into the block by nodes. Blockchains mostly follow the

concept of replicated state machines, where each node maintains a local replication of the ledger in a certain

state sn with an incrementing counter n ∈ ℕ0, which expresses the height of a ledger (also called block height

in blockchain). Appending new blocks or transactions to the local replication of the ledger represents a

transition from a state sn to the subsequent state sn+1. For example, Alice owns 10 coins in sn and she sends

2 coins to Bob. The transaction is first put in a queue of transactions to be processed and is eventually

committed to the ledger. This commit initiates a transition from sn to sn+1, in which Alice has a new balance

of 8 coins and Bob’s balance is increased by 2 coins. Other DLT concepts do not rely on generating a single

1 We prefer the term node controller to node provider, because the node provider could be a cloud service provider (e.g. in Blockchain as a Service) that

only hosts the node, while the node controller could maliciously influence the behavior of the node.

4

chain of blocks or even do not use blocks at all. Instead, for example, the DLT concept BlockDAG links

generated blocks in a directed acyclic graph (DAG), while in a transaction-based DAGs (TDAG) transactions

are linked directly with each other2.

DLT designs specify the abstract description of DLT concepts by adding concrete values and processes for

inherent DLT characteristics such as a maximum block size or a consensus mechanism to achieve a certain

fault-tolerance. There are important differences between DLT designs that make DLT designs suitable for

some applications and unsuitable for others. For instance, the DLT design Bitcoin creates a new block every

10 minutes and has a fixed, maximum block size of 1 MB [23]. In contrast, the DLT design Ethereum

publishes new blocks every 17 seconds on average and block size is decided by individual nodes to increase

flexibility of the distributed ledger. An instantiation of the formal specification of a DLT design is a

distributed ledger.

DLT characteristics represent features of DLT designs, which are of technical (e.g., block creation interval)

or administrative (e.g., node controller verification) nature, where the technical characteristics constrain

future changes of the administrative characteristics (e.g., lack of scalability regarding network size of a

distributed ledger). DLT properties are groups of DLT characteristics and shared by each DLT design. For

instance, throughput and scalability are both associated with the DLT property performance. Although all

DLT designs cover all DLT properties, DLT designs must not cover all DLT characteristics. For instance,

TDAGs do not use blocks and do not feature any DLT characteristics related to blocks (e.g., block size, block

creation interval).

All nodes of a distributed ledger maintain a local replication of the ledger, which is why all nodes must be

synchronized and agree on a common state of the distributed ledger to reach consistency (e.g., agreeing that

Bob’s balance increased after receiving coins from Alice). For this purpose a consensus mechanism is

employed to manage the negotiation between nodes, which (eventually) agree on a common state of the

ledger [23,27]. Consensus mechanisms build upon trust models, which consider threats and uncertainties in

the process of consensus finding such as Byzantine failures. Trust models form a set of assumptions, which

must hold to assure consensus finding among nodes (e.g., at least 51 % of nodes must agree on a certain

state). In Bitcoin, the first Byzantine fault-tolerant consensus mechanism that can be applied on a large scale

and is able to prevent double spending (see Section 2.2) was presented: the Proof of Work (PoW)-based

Nakamoto consensus [23]. Nevertheless, Nakamoto consensus comes with several drawbacks, such as poor

throughput, exhaustive energy consumption, and vulnerability to attacks on integrity (see Section 2.2). To

overcome drawbacks of the Nakamoto consensus, numerous alternative consensus mechanisms have been

developed and already applied to DLT designs, such as GoChain [28], Hyperledger Fabric [29], soteriaDAG

[26], and Tendermint [30]. In addition, BlockDAGs and TDAGs often employ alternatives to replicated state

machines in their consensus mechanism, where not all nodes need to maintain an identical replication of the

ledger. Such alternatives make use of random walks (e.g., in IOTA), clustering (e.g., in seele), or only keep

2 Although blockchain represents a special type of BlockDAG, we decided to separate blockchain from BlockDAGs because of the different validation

processes, data structures, and block storage organization [22,23,25,26]. While in blockchain all nodes work on the same block and only one block is

appended to the blockchain, in BlockDAGs nodes work on different blocks that are added in parallel.

Figure 1: Hierarchical structure of Distributed Ledger Technology (DLT), subordinate DLT concepts, and

DLT designs and their respective DLT properties and DLT characteristics

Throughput ...

Performance

...Confident ialityAvailability

Security

RChain...

TDAGBlockDAG

...

...

Ethereum

Blockchain

IOTA ...

Dist ributed Ledger Technology

DLT Concept s

DLT Designs

DLT
Characterist ics

DLT
Propert ies

...

5

transactions of a certain user on individual nodes (e.g., Nano). The consensus mechanisms discussed in this

work are summarized in Table 1.

In large, distributed ledgers (e.g., Bitcoin or Ethereum), where nodes can arbitrarily join and leave the

network, it is not possible to reach consensus among all nodes before new data is added to the ledger [39].

Thus, newly appended data is not finalized and only probabilistic finality is given; that is, the data cannot be

altered or removed with a certain probability [40]. The probability of finality of a transaction increases with

more blocks (or transactions) that are appended to the distributed ledger after the transaction. Accordingly,

the trust model of probabilistically final DLT designs (e.g., Bitcoin) allows for network partitions by design.

Some nodes may agree on a state sn,1 and others agree on sn,2 with sn,1 ≠ sn,2. Network partitions which maintain

different states are called forks. There can be an arbitrary number of forks in a distributed ledger and the DLT

design needs to apply a rule to decide on a block (or transaction) being included into the main branch of the

ledger and the ones not being part of it (named stale blocks or stale transactions). Fork resolution rules

determine a certain state of the ledger to be correct, thereby, returning the system to a consistent state. In

contrast to probabilistic finality, there is total finality (or just finality), where all nodes agree on the new state

before data is appended to the ledger [41]. Once appended, data cannot be altered or removed anymore and

forks such as in Bitcoin or Ethereum are not even possible (see Table 1).

Despite the widespread distinction between public and permissioned DLT design [e.g., 42,43] or public,

consortium, and private DLT design [e.g., 44], we use a more granular terminology to make the trade-offs in

the following sections unambiguous (in line with [15]). We distinguish between public and private DLT

designs depending on the fact if a new node can directly join a network (referred to as public DLT) or if a

permission must be granted first (referred to as private DLT). The distinction into public-private refers to

read permissions and can be further distinguished into permissionless and permissioned, which refers to write

permissions. Nodes can either all have the same permission (referred to permissionless) or must first be

granted permission to validate and commit new data (referred to permissioned). The used terminology is

summarized in Table 2.

Table 1: Selection of relevant consensus mechanisms for this work

Consensus Mechanism Identifier DLT Concept Finality Exemplary DLT Designs

CBC Casper Casper BlockDAG Probabilistic RChain [25]

Delegated Proof of Stake DPoS Blockchain Total EOS [31]

Delegated Proof of Stake DPoS TDAG Probabilistic Nano [32]

Modified Nakamoto Consensus using
Greedy Heaviest Observed Sub Tree (GHOST)

PoW Blockchain Probabilistic Ethereum [22]

Nakamoto Consensus PoW Blockchain Probabilistic Bitcoin [23]

PHANTOM PHANTOM BlockDAG Probabilistic soteriaDAG [26]

Practical Byzantine Fault Tolerance PBFT Blockchain Total Hyperledger Fabric [33]

Proof of Authority PoA Blockchain Total Ethereum [34]

Proof of Elapsed Time PoET Blockchain Probabilistic Hyperledger Sawtooth [35]

Proof of Reputation PoR Blockchain Total GoChain [36]

Proof of Stake PoS Blockchain Probabilistic Dash [37]

Tendermint Core Tendermint Blockchain Total Tendermint [30]

Tangle Tangle TDAG Probabilistic IOTA [38]

Table 2: Exemplary classification of DLT designs according to the used

terminology and the respective focus

 Public Private

Permissioned GoChain [28]

High performance general purpose

Quorum [45]

Financial asset transfers

Permissionless Ethereum [22]

General purpose

ARK Ecosystem [46]

Flexibility for developers

6

In public-permissionless DLT designs (e.g., Bitcoin), an incentive mechanism is required because validating

nodes must be motivated to share their computational resources. The incentive mechanism specifies a reward

scheme for nodes that participate in the generation and/or validation of blocks and transactions, consensus

finding, and maintenance of the distributed ledger. The participation of nodes in a distributed ledger to receive

a monetary reward is called mining. Accordingly, validating nodes are often referred to as miners. For

example, validating nodes in the Bitcoin network receive a certain amount of coins if they are the first to

create a valid new block. Such incentive mechanisms are predominantly applied to distributed ledgers that

employ nodes of unknown node controllers, thus, allow for a high degree of decentralization.

A distributed ledger’s degree of decentralization refers to the number of independent validating node

controllers reduced by the number of controllers that control more than average validating nodes divided by

the total number of nodes in the DLT network. Consequently, a distributed ledger’s degree of decentralization

is determined by two dimensions: the number of independent validating node controllers (e.g., companies or

individuals) and the number of validating nodes (see Figure 2). If the number of validating nodes increases,

and all additional nodes are maintained by the same controller, the degree of decentralization would decrease

because this controller gains unproportionally influence on the distributed ledger’s consensus finding and

integrity. On the contrary, the degree of decentralization is increased as independent node controllers add

nodes of at most average computational resources to the distributed ledger.

2.2 Attack Vectors and Vulnerabilities

To understand drawbacks of applications on DLT in the form of vulnerabilities, it is important to introduce

potential attack vectors. Although DLT is often considered to be immutable, there have already been millions

of dollars lost due to successful attacks on distributed ledgers that rewrote the transaction history (e.g., 51%

Attack [47]). In this section, we explain the most prominent attacks on the integrity of a DLT design, which

play a role in the identified trade-offs. It should be noted that the explained attacks predominantly target

forkable DLT designs (e.g., Bitcoin or Ethereum) because there is only little research on the security of

DAGs.

Double Spending. Double spending refers to multiple use of a particular asset by the same user for different

purposes without the asset being returned before using it again [23]. In a double spending attack, the attacker

suggests to a user that a product was paid on a certain network partition visible for the user, while transferring

Figure 2: The degree of decentralization is determined by the number of independent validating node

controllers (e.g., an organization or individuum) and the number of validating nodes in the distributed

ledger. An increase in number of independent controllers who control validating nodes increases the overall

degree of decentralization of a distributed ledger.

7

the just issued coins back to her own wallet on another network partition. After the network partitions were

resolved, the attacker still owns her coins and the product she actually did not pay for.

Partition-based Attacks. Partition-based attacks can be successfully performed in public-permissionless DLT

designs with probabilistic finality (e.g., Bitcoin and Ethereum). In such DLT designs, forks can be exploited

to perform attacks on the distributed ledger’s integrity. The most popular attacks are 51 % attacks, balance

attacks, and eclipse attacks. A 51 % attack can be successful in DLT designs with a consensus mechanism

that relies on a majority decision among nodes (e.g., Nakamoto Consensus). If the attackers control the

majority of nodes, they can rewrite the transaction history because their majority of nodes agrees on their

desired (fraudulent) state of the distributed ledger. In DLT designs such as Bitcoin, where nodes can

arbitrarily join and leave the network, mechanisms are required to prevent attackers from setting up a huge

number of virtual nodes. Such mechanisms usually employ proof of work [48], where nodes must first do

computational work before new data can be committed to the distributed ledger. A balance attack

incorporates the process of transiently disrupting communications between subgroups of validating nodes

with equal computational power, which is determined by, for example, the nodes’ hashing rate [49]. While

the communication is disrupted, transactions can be submitted to one subgroup while the attacker mines in

another subgroup. The attackers’ aim is to outweigh the blockchain branch they submitted transactions to

with the blockchain branch they work on to rise probability for successful double spending. As a result, the

ledger may be rewritten at any time the attacker prefers [49]. In an eclipse attack, attackers target network

partitions by delaying or blocking message forwarding (e.g., transactions) to nodes of the attacked network

partition [50]. Due to the delay of messages, targeted nodes are isolated from the network. Such network

partitions facilitate double spending. For example, an attacking node would send a transaction (e.g., a

payment) to the victim node. The victim node validates the transaction and is, subsequently, eclipsed from

the network by the attacker. Then, the attacker issues another transaction to the entire network and spends

the same assets again. Since all partition-based attacks target information asymmetry among nodes, partition-

based attacks can be successfully performed in combination with routing attacks (i.e., Border Gateway

Protocol hijack attack [51]). In routing attacks, attackers manipulate nodes or network operators to

intentionally delay network messages [51].

Bribery Attack. During a bribery attack, an attacker strives to create a new main branch by incentivizing

validating nodes to work on a particular fork of the DLT design, which the attacker rules [52]. Thus, the

number of nodes that work on the attacker’s branch increases and the attacker’s branch may eventually catch

up with the main branch of the blockchain and, finally, become the main branch.

Selfish-Mining. Selfish-mining attacks describe a phenomenon where a set of nodes work on their own

branch of a blockchain without publishing their blocks to the main branch until their branch would be chosen

as future main branch by the fork resolution rule applied to the distributed ledger [16,53]. A selfish-mining

attack is carried out by attackers to obtain excessive rewards or waste the computing power of honest

validating nodes [53]. It was found that a successful selfish-mining attack can be performed in Bitcoin if at

least one third of the validating nodes collude [16].

Long-Range Attack. A long-range attack aims to rewrite the transaction history from the genesis block (the

first block in a blockchain). A long-range attack is successful when the attacker has generated a fork, which

has become the main chain, which is similar to selfish-mining (or short-range attack) [54]. Predominantly

DLT designs, which rely on Proof of Stake as a consensus mechanism are prone to long-range attacks because

PoW-based DLT designs require too much computational effort to rewrite transaction history beginning from

the genesis block, which is why long-range attacks are considered impractical for PoW-based DLT designs

[54].

Blockchain Anomaly. The blockchain anomaly refers to the fact that a blockchain cannot guarantee that a

committed transaction is permanently included in a fork of a blockchain. Due to this, conditional transactions

are hard to perform. In conditional transactions, a transaction ti+1 of a node n1 should be committed after a

certain condition is fulfilled (e.g., the commit of a previous transaction ti issued by n2) [27]. If the transactions

8

have been issued by n1 and n2 to different network partitions, it is likely that ti and ti+1 are included in different

forks of the blockchain. The blockchain may finally decide for the fork not containing ti but ti+1 and only

commit ti+1, which violates the conditional execution of ti and ti+1. The blockchain anomaly can occur in

blockchains whose consensus mechanism does not ensure deterministic agreement between nodes and

consensus safety [27].

Sybil Attack. In a sibyl attack, the attacker sets up multiple (virtual) nodes to contribute the majority of actors

in consensus finding to eventually rewrite the transaction history of the distributed ledger. To decrease the

probability of successful sibyl attacks, all nodes must perform a certain PoW, where each node must first

finish a computationally hard task, which can easily be evaluated by other nodes [48]. For example, in

Bitcoin, Ethereum, and Nano, the block (or transaction) issuer must first guess a nonce with a corresponding

hash value, which fulfills an easy to validate condition (e.g., starting with a defined minimum number of

zeroes). Sybil attacks can be performed to isolate (honest) nodes from the network by not relaying

transactions of these nodes [55,56]. The selective relaying of transactions can contribute to double spending

[57].

2.3 Smart Contracts and Respective Vulnerabilities

Several distributed ledgers offer the possibility to deploy and execute customized business logic through

smart contracts. Smart contracts are software programs, which are developed in basic OP_CODE (e.g., in

Bitcoin Script language) [58,59] or in high-level programming languages (e.g., Java, Python, or Solidity),

allowing for Turing completeness [22,31,60]. When Bitcoin was invented, the development of smart

contracts was limited to the use of cryptographic functions such as hash-locks, time-locks, and multi-

signatures. To give more flexibility to developers, the Ethereum foundation developed the Ethereum Virtual

Machine (EVM) that allows for the execution of Turing complete smart contracts, which can be developed

in high-level programming languages such as Solidity [22]. An Ethereum smart contract is contained in a

transaction, which is sent to and eventually stored on the Ethereum blockchain. Ethereum smart contracts

can receive and keep assets and issue transactions. The smart contract can be called via its unique address to

trigger methods [22]. If an Ethereum smart contract is triggered by a transaction, each node of the distributed

ledger separately executes the smart contract. Smart contract computations are not restricted to the use of

data already stored on the ledger (on-chain data), but can also retrieve data from external data feeds (referred

to as oracles) and outsource computation-heavy processes [61].

Smart contracts are of high interest in the field of DLT because they enable the development of applications

on DLT. However, smart contracts leverage programming paradigms that developers are not yet used to (e.g.,

rollbacks of failed transactions due to out-of-gas conditions). Since Ethereum introduced Turing complete

smart contracts on public-permissionless DLT designs, the issue of how to prevent infinite loops became

crucial to prevent system failure. As a solution, a pricing schedule, which requires an economic equivalent

(referred to as gas in Ethereum) to be paid for the execution of a particular smart contract, is applied in public-

permissionless DLT designs [22]. As soon as the quantity of gas is no longer sufficient to execute a smart

contract, its execution is cancelled (out-of-gas condition). Out-of-gas conditions always require appropriate

error handling. Otherwise, the respective smart contracts is locked automatically and cannot be executed

anymore [62,63]. In the following, we briefly review the smart contract vulnerabilities relevant for this work.

Overflow/Underflow. Numbers in smart contracts, especially, those being executed in the EVM, are usually

stored in variables of the datatype unsigned integer (uint). If the stored values exceed the maximum uint

value (overflow), the value is set to zero. If the value of a uint variable becomes smaller than zero (underflow)

it is set to its maximum value [62,64]. Attacks can exploit over- and underflows for different purposes such

as manipulation of payout values. To prevent overflow/underflow attacks, developers must consider whether

the uint value could exceed its maximum or become less than zero.

Unbounded Loops. The most standard form of a gas-focused vulnerability is that of unbounded loops. Loops

whose behavior is determined by user input could iterate too many times, exceeding the block gas limit,

becoming too expensive economically to perform, or lead to overflow or underflow. For example, a list could

9

become a cause for an unbounded loop if users can add arbitrary entries and, thus, increment the number of

iterations necessary to go through the list, where each iteration costs gas. This will commonly lead to a Denial

of Service for all transactions that must attempt to iterate the loop [62].

Reentrancy. Atomicity and sequentiality of transaction execution require that non-recursive methods cannot

be re-entered before their return values are committed to memory. The requirements for atomicity and

sequentiality are by default not fulfilled in smart contracts and must be considered by smart contract

developers. Recursive calls of smart contract functions (referred to as reentrancy) can occur as a single smart

contract invokes itself or in a chained execution of smart contracts. Often, such recursive calls neglect the

execution model underlying smart contracts (e.g., finite state machines), where each change in the smart

contract’s data represents a transition to a new state of the smart contract. The execution model allows for

the execution of functions (e.g., withdraw functions) without changing the smart contracts internal state.

[64,65]. In one of the most prominent incidents in the context of smart contracts, the attack on the

Decentralized Autonomous Organization (The DAO) [65], reentrancy was exploited, which caused the hard

fork of Ethereum into Ethereum Classic and Ethereum in 2016.

Wallet Griefing. A smart contract can cause unexpected errors when invoking external methods that may

itself throw an out-of-gas exception [66]. In the EVM transactions are, for example, issued to an account

using the <recipientAccount>.send(uint) function. Using this function to transfer tokens can lock the smart

contract if error handling is not properly implemented because the execution of

<recipientAccount>.send(uint) can produce out-of-gas conditions [66]. Wallet griefing is also realistic when

the smart contract should handle multiple clients without isolation and when a failure in sending transactions

using <recipientAccount>.send(uint) occurs [62].

2.4 Prior Research on Trade-Offs between DLT Characteristics

Viability and maintainability of applications on DLT heavily depends on the choice of a DLT design.

Maintainability refers to making an application easy to update and adapt to changing requirements. As DLT

combines insights from several disciplines of computer science (e.g., distributed systems and cryptography)

and economics (e.g., game theory), DLT designs are complex and implications for applications on the

respective DLT design are not trivial to derive. Extant research on DLT can be distinguished into four

research streams: description, analysis, application, and guidance (see Table 3).

The description research stream focuses on structured descriptions and classifications of DLT, for example,

taxonomies of DLT characteristics. Characteristics of and differences between DLT designs are collected

and consolidated into structured overviews [e.g., 14,67–69]. However, dependencies between identified DLT

characteristics are seldom investigated and the causes for the ever-increasing number of DLT designs remain

unclear. Hence, the practical or technical use of identified DLT characteristics for a comprehensive

understanding of functionalities and constraints of DLT designs is limited to the provision of a common

understanding of selected DLT designs, while implications for application development remain unclear.

In the second research stream, analysis, dependencies between selected DLT characteristics are measured

and individual dependencies between DLT characteristics are reported. For example, high performance of a

DLT design mostly comes at the cost of its level of security [11,53]. Extant research explains this trade-off

in blockchains by the fact that various attacks result from an increased stale block rate, which is influenced,

among other things, by the (mis-)configuration of block size and block creation interval in public-

permissionless DLT designs [11,53]. However, the application perspective is not considered in prior analysis

Table 3: Overview of prevalent DLT research streams

Stream Description Example

Description Generation of structured descriptions and classifications of DLT designs [14,69]

Analysis Measurement and report of dependencies between particular DLT characteristics [11,53]

Application Development of prototypes and investigating the application of DLT designs in certain domains [12,70]

Guidance Development of processes to guide practitioners when looking for a suitable DLT design for

applications

[69,71]

10

research because most of the research articles do not explain practical implications that result from the

observed effects produced by configurations of DLT characteristics. Additionally, only few DLT

characteristics have been included in these analyses (e.g., block size, throughput, or scalability). A holistic

view on dependencies between DLT characteristics and resulting drawbacks is not presented in this stream.

The third research stream focuses on the application of DLT in certain domains, for example, supply chain

management, health IT, or the Internet of Things. Due to the novelty of DLT, the potential for and usefulness

of applications on DLT in different domains is still under investigation. Hence, several application prototypes

on DLT were already developed and drawbacks due to the chosen DLT designs have been identified. For

example, the Ethereum blockchain is considered to have a low throughput [12,70] and is costly [72] when

used in the Internet of Things [70]. The Bitcoin blockchain cannot provide confidentiality and has an even

lower throughput than Ethereum [73]. IOTA, which is predominantly designed for the use in the Internet of

Things, is considered to be slow when handling a massive amount of data [74]. Hyperledger Fabric and

Ripple [75] come with high throughput but limited scalability in the number of validating nodes [76]. The

practical drawbacks caused by DLT designs are often mentioned in the application research stream, but the

causes of the respective drawbacks are not further investigated.

The forth research stream, guidance, focuses on the development of processes to guide practitioners when

looking for a suitable DLT design for applications. However, the presented processes are highly abstract and

generic, and focus on questions related to whether a distributed ledger is useful at all. Some articles consider

select DLT designs and compare them but hardly address causes for the viability of investigated DLT designs

for applications [e.g., 17,77,78]. Other articles address the degree of decentralization [e.g., 69,71]. The

technical fundamentals of DLT that are crucial for the viability of a DLT design for an application are only

sparsely discussed in the guidance research steam. Therefore, existing measures to evaluate suitability of an

underlying DLT design for an application cannot be effectively used and the assessment of drawbacks of

applications on a particular distributed ledger remains unclear.

These four research streams provide valuable contributions in general and for identifying trade-offs in

particular. While already some trade-offs have been identified in prior research, these research streams are

disjunct, which is why it is hard to obtain a holistic overview of the implications of a DLT design for an

application on DLT. More comprehensive analyses of trade-offs in DLT in extant research are limited to the

context of electronic health records and consider only blockchains [9,79]. The findings in extant research on

dependencies between DLT characteristics should be synthesized to identify trade-offs and support the

development of viable applications on DLT for various use cases. This is the objective of our work.

3 Method

To answer our research question, how do trade-offs between DLT characteristics impact the viability of

applications on DLT, we applied a three-step research approach. First, we identified prevalent DLT

characteristics by conducting a descriptive literature review [80–82] and surveying DLT experts. Second, we

analyzed the identified DLT characteristics in detail to uncover trade-offs in DLT designs. Finally, we

consolidated the identified trade-offs into archetypes and derived implications for and drawbacks of

applications on DLT.

3.1 Identification of DLT Characteristics

Our descriptive literature review [83] was guided by extant recommendations for literature reviews [84–86].

To identify publications addressing DLT characteristics, we searched scientific databases, which cover the

top computer science conferences and journals: ACM Digital Library, EBSCOhost, IEEE Xplore, ProQuest,

and ScienceDirect. To cover a broad set of publications, we searched each database with the following string

in title, abstract, and keywords: (blockchain* OR (“distributed ledger*”)). We limited our search to peer-

reviewed articles to ensure a high quality of articles. Our search in June 2018 identified 1,144 articles. To

identify and filter articles, we first checked the relevance of each article by analyzing title, abstract, and

keywords. If any indication for relevance appeared, the article was marked for further analysis. We excluded

articles that were duplicates (62), grey literature (i.e., editorials, work-in-progress, dissertations) and books

11

(18), not applicable to our study (56), or not available in English (31). This first relevancy assessment resulted

in a sample of 977 potentially relevant articles. Afterwards, a fine-grained relevance validation was made by

accessing and reading the article abstracts, resulting in a final sample of 191 relevant articles. In this second

relevance assessment, we excluded non-research articles (76) and articles that did not relate to viability of

DLT designs for applications on DLT (710).

After the literature search was completed, we, first, carefully read and analyzed the 191 articles to identify

DLT characteristics. We recorded for each extracted DLT characteristic a name, a description, and the

original source [87]. In total, 277 DLT characteristics were extracted. A list of master variables was created

to aggregate the identified DLT characteristics. A master variable is an aggregation of similar DLT

characteristics consisting of a master variable name and a master variable description [87]. If an identified

DLT characteristic fitted into an existing master variable, we assigned it accordingly; otherwise, a new master

variable was created. For example, we aggregated the DLT characteristics immutability and tamper-

resistance to the master variable integrity. Since different people often put the same labels on different things,

and vice versa, we considered semantic ambiguities (e.g., different terms for the same characteristic) during

our data analysis [88]. To improve readability of this article, we use the term DLT characteristic for the

identified master variables in the remainder of this manuscript because master variables represent

aggregations of similar DLT characteristics. To ensure that we identified a reliable set of master variables,

we aimed to reach theoretical saturation [89,90] with respect to the emerging DLT characteristics. Since no

new master variable emerged in the last 27 articles identified in our literature review, we are confident to

have reached theoretical saturation.

DLT characteristics are further grouped into DLT properties under consideration of their influence on the

DLT design (e.g., performance or security). For instance, DLT characteristics were grouped into the DLT

property security if they were related to common security topics such as confidentiality, integrity, and

availability.

To consolidate and critically evaluate the derived DLT characteristics and DLT properties and their

respective definitions, we set up an online survey to obtain feedback. We sent 68 requests for feedback via

email to DLT experts who had at least three years of experience in dealing with DLT in a business or private

context. 35 DLT experts participated in the survey and we received 113 comments on the generated DLT

properties and DLT characteristics. We revised the DLT characteristics and DLT properties and their

definitions according to the gathered feedback. For example, the DLT characteristic cost was split into

resource consumption and transaction fee.

3.2 Uncovering Trade-Offs Between DLT Characteristics

We extracted dependencies between DLT characteristics described in the examined research articles. In case

these research articles discuss relevant trade-offs, we coded trade-offs between DLT characteristics [e.g.,

9,11,79]. In addition, we analyzed the identified dependencies between DLT characteristics (e.g., more

replications of the stored data increase availability) and abstracted trade-offs (e.g., more replications increase

the latency until consistency among all nodes is reached).

We evaluated the derived trade-offs on seven DLT designs including Bitcoin, Ethereum, and Hyperledger

Fabric representing the blockchain concept; RChain and soteriaDAG representing the BlockDAG concept;

and IOTA and Nano representing the TDAG concept (see Figure 1). In particular, we discussed the

occurrence of the identified trade-offs in thoughtful group discussions by two authors and two PhD students

having profound knowledge and experience in the domain of DTL. Prior to the group discussions, the four

participants individually rated each trade-off for the selected ledgers based on their knowledge and

experience. In addition, each participant studied available documentation and white papers for the selected

DLT designs. Individual rating results were consolidated and then actively discussed by participants until all

conflicts were resolved and consensus (total finality) was reached. Table 6 summarizes our findings.

12

3.3 Configuration of DLT Archetypes

To make the derived trade-offs between DLT characteristics more tangible and evaluate their impact on

applications on DLT, we jointly configured DLT archetypes for each DLT property. These archetypes

describe how to configure DLT characteristics to achieve a certain DLT property (e.g., flexibility) while

considering underlying trade-offs. To identify the archetypes, we reviewed identified DLT characteristics for

each DLT property and selected trade-offs corresponding to DLT characteristics first. We then decided what

DLT characteristic is preferred over another to achieve the DLT property with respect to each trade-off. For

example, an adequate block size outweighs transaction fees (see trade-off G.1) to achieve the DLT property

flexibility. Finally, for each archetype and its corresponding property we highlight drawbacks for applications

on DLT that are caused by the underlying DLT design. We assumed that all characteristics that are more

positively associated with the property assigned to the archetype should have a high value and accounted for

the respective trade-offs. For the performance archetype, we assumed, for example, high scalability and

throughput and analyzed the effects of this configuration on DLT characteristics of other DLT properties

(e.g., availability within security).

4 Trade-Offs between DLT Characteristics

4.1 DLT Characteristics and Trade-Offs between DLT Characteristics

The literature review revealed 40 DLT characteristics that are relevant for the assessment of a DLT design’s

viability for an application on DLT. The 40 DLT characteristics are briefly presented and defined in Table 5.

The grouping of the 40 DLT characteristics resulted in a final set of 6 DLT properties, which are presented

in Table 4. In the following, we will discuss derived trade-offs between DLT characteristics. Table 6 lists

identified trade-offs.

A Flexibility vs. Performance

A.1 Turing-complete Smart Contracts vs. Resource Consumption

The use of external services in smart contracts via oracles enables more flexibility in defining the conditions

that must be fulfilled before the smart contract issues transactions. If an oracle is requested from a smart

contract, the oracle receives requests from every node because every node needs to execute the smart contract.

Thus, an oracle can become a performance bottleneck because the oracles’ bandwidth may not be sufficient

to handle the amount of (almost) simultaneous requests by nodes.

 Table 4: Identified DLT properties

DLT Property Description

Flexibility The degrees of freedom in deploying applications on and customizing a DLT design

Opaqueness The degree to which the use and operation of a DLT design cannot be tracked

Performance The accomplishment of a given task on a distributed ledger under efficient use of computing resources and time

Policy The ability to guide and verify the correct operation of a DLT design

Practicality The extent to which users of a distributed ledger can achieve their goals with respect to social and socio-technical
constraints of everyday practice

Security The likelihood that functioning of the distributed ledger and stored data will not be compromised

13

A.2 Turing-complete Smart Contracts vs. Transaction Fee

In Bitcoin, no Turing-complete smart contracts can be developed and time complexity for processing a

transaction (e.g., for multi-signature transactions) equals 𝑘 ∗ 𝑁 at maximum, where a transaction’s payload

incorporates N bytes and a constant factor k. Due to the limited flexibility in Bitcoin smart contracts, there is

no need to apply a mechanism to interrupt potential infinite loops (e.g., like gas in Ethereum). Instead, in

Bitcoin transaction fees are employed to incentivize validating nodes to prefer the validation of a transaction

Table 5: Identified DLT characteristics

DLT

Property
DLT Characteristic Description

F
le

x
ib

il
it

y

Interoperability The ability to interact between DLT designs and with other external data services

Maintainability The degree of effectiveness and efficiency with which a DLT design can be kept operational

Turing-complete Smart

Contracts

The support of Turing-complete smart contracts within a DLT design

Token Support The possible uses of tokens within a DLT design (e.g., security token, stable coin, or utility

token)

Transaction Payload The size of the payload in a transaction

O
p

aq
u
en

es
s

Traceability The extent to which transaction payloads (e.g., assets) can be traced chronologically in a DLT

design

Transaction Content
Visibility

The ability to view the content of a transaction in a DLT design

User Unidentifiability The difficulty of mapping senders and recipients in transactions to identities

Node Controller
Verification

The extent to which the identity of validating node controllers is verified prior to joining a
distributed ledger

P
o

li
cy

Auditability The degree to which an independent third party (e.g., state institution, certification authority)
can assess the functionality of a DLT design

Compliance The alignment of a DLT design and its operation with policy requirements (e.g., regulations or

industry standards)

Degree of

Decentralization

The plurality of independent validating node controllers reduced by the number of controllers

that control more than average validating nodes

Incentive Mechanism A structure in place to motivate node behavior that ensures viable long-term operation of a

distributed ledger (e.g., by contributing computational resources)

Liability The existence of a natural or legal person that can be subjected to litigation with respect to the
DLT design

P
er

fo
rm

an
ce

Block Creation Interval The time between the creation of consecutive blocks (only in DLT designs using blocks)

Block Size Limit The value of a fixed maximum storage size of a block (only in DLT designs using blocks)

Confirmation Latency The time span between the inclusion of a transaction in a ledger and the point in time where

enough subsequent transactions have been included in the ledger so that the likelihood of
future manipulations of the initial transaction becomes negligible

Resource Consumption The computational efforts required to operate a DLT design (e.g., for transaction validation,

block creation, or storing the distributed ledger)

Propagation Delay The time between the submission of a transaction (or block) and its propagation to all nodes

Scalability The capability of a DLT design to efficiently handle decreasing or increasing amounts of

required resources (e.g., of transactions per second or number of validating nodes)

Stale Block Rate The number of blocks that have been generated in a period of time but not appended to the

main chain of the distributed ledger (only in forkable DLT designs using blocks)

Throughput The maximum number of transactions that can be appended to a DLT design in a given time

interval

Transaction Validation

Latency

The time required for validating a transaction by validating nodes

P
ra

ct
ic

al
it

y
 Transaction Fee The price transaction initiators can or must pay for the processing of transactions

Ease of Node Setup The ease of configuring and adding a new or crashed node to the DLT design

Ease of Use The simplicity of accessing and working with a distributed ledger

Support for Constrained

Devices

The extent to which devices with limited computing capacities (e.g., sensor beacons) can

participate in a DLT design

14

with higher transaction fees over transactions where the sender is only willing to pay a smaller transaction

fee (e.g., in Bitcoin).

Turing completeness (e.g., in Ethereum) adds more flexibility to smart contracts but also increases

complexity and vulnerabilities. Turing completeness allows for the use of loops in smart contract code, which

may even result in infinite loops and, eventually, Distributed Denial-of-Service (DDoS) attacks. The

(automated) detection of infinite loops is not possible due to the halting problem [91]. To cope with potential

infinite loops in permissioned DLT designs, timeouts are often applied (e.g., in Hyperledger Fabric). Such

timeouts, however, limit flexibility in the smart contract development because an upper boundary of time is

defined to kill the execution of a smart contract. To overcome this limitation, a pricing schedule is applied in

various DLT designs (e.g., gas in Ethereum; see Section 2.3) to incentivize validating nodes to execute smart

contracts. Users must pay a certain charge for smart contract execution proportional to the smart contract’s

computational operations. In such distributed ledgers, transaction fees are thus both an incentive mechanism

for nodes to process smart contracts and a security mechanism to prevent potential vulnerabilities stemming

from Turing completeness in smart contracts.

A.3 Turing-complete Smart Contracts vs. Transaction Validation Speed

Support for more expressive programming languages (i.e., C++, Java, or Solidity) enables the development

of smart contracts that offer a broad range of functionality. The more functionality is added to a smart

contract, the higher becomes its complexity. Ultimately, this impedes performance because of the increased

execution time for complex smart contracts. Consequently, the time required for transaction processing and

validation increases [92].

B Flexibility vs. Security

B.1 Maintainability vs. Availability

To secure DLT designs, the software client of individual nodes must be maintainable and remain compatible

with the majority of nodes in the network. Updates for the client protocol of a DLT design must be performed

on each node. This is why maintainability of DLT designs decreases with an increasing number of

independent nodes due to additional efforts when negotiating and applying software client updates. For

example, in Bitcoin and LiteCoin, it has taken weeks to agree on updates such as the adoption of Segregated

Witness (SegWit) and SegWit2x [93]. However, an increasing number of nodes increases the ledger’s

Table 5 cont.: Identified DLT characteristics

DLT

Property
DLT Characteristic Description

S
ec

u
ri

ty

Atomicity The state where transactions are either completely executed or not executed

Authenticity The degree to which the correctness of data that is stored on a distributed ledger can be verified

Availability The probability that a distributed ledger is operating correctly at any point in time

Censorship Resistance The probability that a transaction in a DLT design will be intentionally aborted by a third party

or processed with malicious modifications

Confidentiality The degree to which unauthorized access to data is prevented

Consistency The absence of contradictions across the states of the ledger stored by all nodes participating in

a DLT design

Durability The property that data committed to the ledger will not be lost

Fault Tolerance The constant maximum proportion of failed, malicious, or unpredictable nodes a DLT design

can compensate while operating correctly

Integrity The degree to which transactions in the distributed ledger are protected against unauthorized

(or unintended) modification or deletion

Isolation The property that transactions do not impact each other during their execution

Non-Repudiation The difficulty of denying participation in transactions

Reliability The ability of a system or component to perform its required functions under stated conditions

for a specified time

Strength of

Cryptography

The difficulty of breaking the cryptographic algorithms used in the DLT design

15

redundancy due to increasing replications, which is beyond what is possible with distributed databases prior

to DLT. The dependency between maintenance-related cost (e.g., time and money) and the degree of

decentralization of the distributed ledger is also depreciatingly known as blockchain bloat or DLT bloat [94].

B.2 Maintainability vs. Integrity

To allow for efficient maintenance of a distributed ledger, the coordination of update procedures should be

facilitated by a low number of (independently controlled) nodes (see trade-off B.1). However, a decrease in

the number of independently maintained nodes (hence, a decrease in the DLT design’s degree of

decentralization) impedes the integrity of DLT designs due to reduced absolute fault tolerance regarding the

number of tolerable, malicious nodes.

On the other side, a high level of a distributed ledger’s integrity also impacts maintainability of applications

on DLT [95]. For achieving a high integrity of distributed ledgers, smart contracts are tamper-resistance:

smart contracts must always be redeployed and initialized with the state of the obsolete version whenever the

smart contract is updated. In addition, the stored smart contract addresses must be adapted in any module of

the application and chained smart contract that references the deprecated smart contract. Hence, tamper-

resistance and resulting integrity of a distributed ledger increases efforts for maintenance. However, by

relaxing integrity and, thus, tamper-resistance of smart contracts, the idea of an inevitable and automated

enforcement of agreements becomes vulnerable to malicious behavior.

B.3 Turing-complete Smart Contracts vs. Confidentiality

Use of smart contracts threatens confidentiality in three ways. First, it is publicly visible which account’s

transactions triggered a smart contract [96]. Second, the compiled smart contract code is also visible to the

public and smart contracts can be decompiled to human readable source code. Thus, the current state of the

smart contract and even values of variables that are declared private in the smart contract can be inferred due

to the transparent smart contract code and transactions [96]. Hence, the common ways of using smart

contracts do not support confidentiality. Nevertheless, there are new approaches for private smart contracts

that tackle this issue. For example, as proposed in the HAWK framework [96], smart contracts can be divided

into a private and a public part. The private part determines the payout distribution among involved parties;

the input data (e.g., a number of coins) is kept private and is protected using zero-knowledge proofs [96]. As

a result, no participant knows the input data other participants sent to the smart contract.3 Third, oracles and/

or external services might have insight into data that is exchanged via smart contracts. Such oracles and/or

services are often centralized instances that forward certain data, for example, in Provable (formerly known

as Oraclize) [98] or TownCrier [86]. The use of external services in DLT requires at least one trusted party,

which stores the requested data. Thus, the oracle provider can have insights into data flows that are made by

users who trigger a smart contract. Although requests may be (partially) executed in a protected SGX enclave4

(e.g., Town Crier [86]), there is at least the risk of a leaked key that can be used to decrypt the respective data

and the risk of failures in the centralized architecture.

C Opaqueness vs. Performance

C.1 User Unidentifiability vs. Resource Consumption

To achieve unidentifiability among users of a DLT design, additional computational resources are required

such as computational power, storage space, and runtime [99]. For example, additional data structures can

be used to increase unidentifiability, but require additional storage size [73,99,100] or zero knowledge proofs,

which, for example, require various message exchanges between two parties to validate instead of one [101].

Thus, unidentifiability comes with the cost of high resource consumption.

3 The public portion of a HAWK smart contract is composed of three parts: publicly executed code, privately executed code, HAWK manager code. While

the publicly executed code is executed on each node of the distributed ledger, the privately executed portion of the smart contract code is only executed by

users, who sent transactions to the smart contract. The HAWK manager is a trusted party, who runs the HAWK manager code in an Intel SGX enclave

[97]. Thus, the HAWK manager must be trusted to not disclose private data of a smart contract, which is sent for the execution of the smart contract.
4 Intel SGX is a set of central processing unit instruction codes that allows user-level code to allocate private regions of memory (referred to as enclaves).

These enclaves are protected from processes running at higher privilege levels.

16

C.2 User Unidentifiability vs. Throughput

The less a network is controlled by a central authority and the more nodes participate in the network (i.e.,

given a high degree of decentralization), the vaguer is the identity of nodes. Therefore, public-permissionless

distributed ledgers promise higher user unidentifiability than permissioned ones due to typically a higher

number of nodes and a higher degree of decentralization. In contrast, a smaller, permissioned network with

verified and identifiable nodes allows for higher throughput because faster consensus mechanisms can be

used (e.g., PBFT). Nevertheless, unidentifiability can be improved by applying additional processes like

mixing and the use of new keypairs for each transaction [102]. Yet, these processes create overhead due to

preprocessing of each transaction, which results in extended transaction validation speed, and hence

decreases throughput.

D Opaqueness vs. Practicality

D.1 Node Controller Verification vs. Ease of Node Setup

Verification of node controllers and their nodes’ permissions (e.g., permissions to read data or to validate

and commit new transactions) is required in permissioned DLT designs [69]. After permissions are granted

to a node, the node can participate in (mostly, voting-based) consensus mechanisms (e.g., PBFT, PoA, or

PoET; see Table 1). A public key infrastructure (PKI) with a trusted certification authority is often integrated

to verify the nodes’ identities and issue certificates to respective nodes [103]. However, a PKI produces

additional efforts to obtain a certificate for the public private key pair and leads to the dependency on a trusted

certification authority. Consequently, it becomes more complex to set up a node and participate in

permissioned distributed ledger compared to public-permissionless DLT designs (e.g., Bitcoin or Ethereum)

that only require to install an open source software client (e.g., geth or parity for Ethereum).

E Performance vs. Performance

E.1 Block Creation Interval vs. Stale Block Rate

Forkable and block-based DLT designs (e.g., Bitcoin or Ethereum) enable smaller block creation intervals.

With smaller intervals, transactions can be faster appended to the distributed ledger; however, other nodes

may not be aware of newly created blocks fast enough and may keep on working on already deprecated

blocks. Ideally, each node would stop working on their blocks as soon as a new block is announced to save

computational resources. However, nodes might receive newly created blocks too late due to propagation

latency and keep working on an already stale block. Consequently, smaller block creation intervals increase

stale block rate [104] and cause computational inefficiency.

F Performance vs. Policy

F.1 Block Creation Interval vs. Degree of Decentralization

In DLT designs where mining is performed to obtain a certain reward, a long block creation interval decreases

the frequency of reward payouts and decreases the likelihood of rewards for individual miners. High variance

in payments for miners makes it more likely that mining nodes will join mining pools5 to increase the

probability of receiving rewards [105,106]. However, the formation of mining pools decreases the degree of

decentralization of a distributed ledger due to the collusion of miners in a mining pool [106].

F.2 Confirmation Latency vs. Degree of Decentralization

In public-permissionless DLT designs, participation of a high number of independent nodes (i.e., a high

degree of decentralization) in consensus finding is required to protect the distributed ledger from malicious

behavior and other Byzantine failures (see Figure 2). In turn, the number of nodes participating in the

consensus mechanism negatively impacts the confirmation latency because agreement (e.g., all nodes choose

the same block) and termination (e.g., all nodes eventually choose a block) in consensus finding cannot be

reached at the same time in asynchronous systems [69,107]. As a solution, consistency and synchronicity

must be relaxed in public-permissionless DLT designs to achieve liveness in a distributed ledger with a high

degree of decentralization.

5 A mining pool is a coalition of miners, who share mining rewards if one of these nodes receives the mining reward. Thus, the probability to receive some

coins increases for each node.

17

F.3 Throughput vs. Degree of Decentralization

One major technological drawback inherent to current public-permissionless blockchains (e.g., Bitcoin or

Ethereum) is a low throughput [108]. Such DLT designs are run by thousands of nodes. These nodes are

operated by potentially malicious node controllers, which is why various DLT designs apply consensus

mechanisms (e.g., Nakamoto Consensus) that reach consistency across multiple nodes with a comparably

high (Byzantine) fault tolerance. However, most consensus mechanisms that allow for highly decentralized

distributed ledgers only provide probabilistic finality to increase throughput by decreasing message

complexity (see Table 1) [109]. In contrast, consensus mechanisms providing total finality (e.g., PBFT [41]

or PoA [110]) can only include a comparatively small set of validating nodes due to their extensive

communication overhead [107,109,111]. Hence, consensus mechanisms providing fast finality are commonly

applied in permissioned DLT designs. Nevertheless, some consensus mechanisms for public DLT designs

decrease the degree of decentralization to achieve an increase in throughput, for example, GoChain’s PoR,

which builds upon PoA and allows only selected organizations to run a validating node [36]. Meanwhile ,

there are consensus mechanisms that apply special derivates of PBFT to public-permissionless DLT designs

(e.g., Tendermint [30] or EOS [31]), where a set of nodes is randomly chosen to reach consensus. However,

this still centralizes decision making to a subset of nodes, decreasing the ledger’s degree of decentralization.

Thus, increased throughput comes at the cost of the degree of decentralization.

G Performance vs. Practicality

G.1 Block Size vs. Transaction Fee

Bitcoin has no mandatory transaction fees but allows for optional transaction fees (see trade-off A.2).

However, miners could create huge blocks to receive transaction fees from as many transactions as possible,

which eventually inhibits the distributed ledger from operating correctly. Generation of such huge blocks is

prevented by introducing a maximum block size limits (e.g., in Bitcoin 1 MB per block or in Bitcoin Cash

2 MB per block). Nevertheless, such fixed block size limits flexibility in distributed ledgers because only

limited data can be included in blocks. In contrast, Ethereum has no fixed maximum block size in favor of

more flexibility (especially, when using smart contracts). However, Ethereum needed to solve the issue of

potentially huge blocks, which is why transactions fees must be paid by any user of the Ethereum network.

H Performance vs. Security

H.1 Confirmation Latency vs. Fault Tolerance

Byzantine fault–tolerant consensus mechanisms come with an inherent trade-off between responsiveness and

robustness [112]. Although enabling better responsiveness, allowing for forks in DLT harms robustness of a

distributed ledger. To minimize the number of forks and to strengthen security, the targeted block creation

interval must be set to a value that is large enough to minimize the stale block rate and small enough to

confirm sufficient transactions within a certain period. If the block creation interval is set too short, the

number of tolerable, malicious nodes decreases due to too many forks because new blocks are created before

all nodes received the last valid block committed to the ledger; however, new blocks are faster confirmed for

some nodes. On the other hand, if the block creation interval is set too long, confirmation latency increases

because it takes more time to append a sufficient number of transactions so that it can be assumed that a

transaction is committed to the ledger.

To cope with crashed nodes, weak synchronicity [112,113] is often applied, where the system designer makes

timing assumptions on network delays to guarantee that the system will respond within a defined timeframe.

A node is assumed as failed, if it did not respond within this timeframe (e.g., in PBFT and consensus

mechanisms that adapt PBFT) [113]. In DLT designs such as Bitcoin and Ethereum [23], where the number

of nodes is unknown, the timing assumption is expressed by the targeted average block creation interval [39],

which prevents nodes from working too long on already stale blocks. Due to the assumption of weak

synchronicity in the consensus mechanism, the targeted block creation interval strongly depends on the

assumed block propagation time [114]. Timing assumptions (or block creation intervals) must be well

balanced. If the timing assumption is too short, too many nodes would be considered as failed, which weakens

18

robustness (e.g., fault tolerance) of the underlying security model. If the timing assumption is too long

responsiveness decreases [112].

H.2 Throughput vs. Consistency

For the DLT concept blockchain, it was found that an increased block size can increase throughput because

more transactions can be included in a block [11]. An increased size of data packets (i.e., blocks or

transactions) comes with a longer propagation delay [11,69,115], which results in a longer state of

inconsistency between nodes in a distributed ledger [72,116]. For Bitcoin and Ethereum, it was found that

the percentage of created blocks that are successfully committed to the blockchain’s main chain becomes low

as the block size (and consequently the block propagation delay) increases [11]. Consequently, the stale block

rate increases and nodes have inconsistent views on the ledger until the forks are resolved. Such inconsistent

states, in turn, facilitate successful attacks (see Section 2.2). Thus, forkable DLT designs based on PoW can

only improve throughput by degrading consistency (and increasing vulnerability) [117].

In BlockDAGs and TDAGs, throughput and scalability are usually much higher than in blockchains because

the number of transactions per second is not bound to the block size, the block creation interval (due to

relaxed consistency), and the requirement of being eventually added to the main chain. Instead, BlockDAGs

and TDAGs require the blocks or transactions to be linked to previous blocks or transactions (e.g., IOTA,

RChain, or soteriaDAG), so that nodes do not necessarily store an identical version of the ledger. Scalability

in terms of increasing or decreasing throughput is theoretically infinite. However, such systems are much

more complex than blockchains because they often aim to be fully asynchronous; and the process of

converging toward a consistent state among all nodes is mostly not deterministic (e.g., in IOTA).

H.3 Throughput vs. Fault Tolerance

In blockchains, the requirement for high throughput is predominantly met by applying finality-preserving

consensus mechanisms where a small set of nodes participates in the transaction and block validation process

(e.g., PBFT [41]). In such consensus mechanisms, the number of nodes n determines the message complexity

for the synchronization of the node states in 𝑂(𝑛2). Due to the exponential increase in message complexity

in contrast to probabilistic consensus mechanisms, finality comes at the cost of the degree of decentralization

of the DLT design and its fault tolerance. In the case of public-permissionless DLT designs for the use of

cryptocurrencies, fault tolerance is, for instance, predominantly prioritized above all other DLT properties

such as performance and flexibility. For example, the Bitcoin blockchain achieves an average throughput of

only 7 transactions per second and a transaction takes on average of 10 min to be committed [23]. However,

Bitcoin is fault tolerant to up to 50 % of fraudulent validating nodes [23]. In contrast, PBFT in Hyperledger

Fabric achieves a moderate throughput of three thousand transactions per second but tolerates only f ≤
|R|−1

3

faulty nodes in a set of validating nodes in the distributed ledger (R) [41].

H.4 Throughput vs. Integrity

Increased block size can increase throughput because more transactions can be included in a block [11].

Bandwidth [100] and the current size of a block strongly influence the block propagation delay. Thus, the

increased throughput comes with longer block propagation delays because more transactions are included in

a block. However, longer block propagation delays increase the probability of forks [69], which threaten

integrity and facilitate successful partition-based attacks on the distributed ledger [118] (e.g., selfish-mining

[104,119], long-range attacks [54], bribery attacks [52]; see Section 2.2). To preserve integrity, the block

creation interval must be adjusted in concert with the block size because a longer block creation interval

mitigates the occurrence of forks and resulting attacks in blockchains [54]. Nevertheless, long block creation

intervals also decrease the number of blocks issued, ultimately decreasing throughput.

Furthermore, highly varying loads on the distributed ledger caused by variations in transaction frequency

result in block size variations and variations in the block propagation delay [120]. Variations in the block

propagation delay increase the probability of successful selfish-mining attacks, thereby, threatening integrity

[16,53].

19

I Policy vs. Flexibility

I.1 Degree of Decentralization vs. Maintainability

Distributed ledgers and applications on DLT require efficient maintenance to allow adaption to changing

requirements and to increase security of the DLT design [121]. Public-permissionless DLT designs enable a

high degree of decentralization, thereby, supporting unidentifiability because nodes do not need to be verified

before joining the distributed ledger. Anybody is allowed to create new accounts. However, updates of

software clients (e.g., geth) for a DLT design resulting from protocol changes must be accepted by the

majority of nodes in the whole network to keep compatibility among the nodes after a hard fork and to prevent

successful malicious behavior of nodes (see Section 2.1) [122]. The usually large number of nodes in public-

permissionless distributed ledgers inhibits the introduction of mechanisms enforcing that nodes are kept up-

to-date, which decreases maintainability of a DLT design [69]. Thus, public-permissioned DLT designs come

with the costs of lower maintainability. In contrast, private-permissioned DLT designs are better

maintainable because each node is verified and node controllers can be contacted directly.

J Policy vs. Security

J.1 Degree of Decentralization vs. Integrity

As the network size increases in public-permissionless DLT designs, it becomes unlikely that participating

node controllers have the same (malicious) intentions or even know each other. Hence, the degree of

decentralization increases (see Figure 2) and the presence of a group of nodes with shared interests that takes

control of the distributed ledger becomes unlikely (e.g., by gaining a majority of, for example, 51 % of the

overall hashing power). This strengthens the integrity of the respective DLT design.

In contrast, private DLT designs typically incorporate a small number of identifiable (trusted) nodes operated

by verified node controllers, thus, decreasing the degree of decentralization and threatening integrity. Each

node of such a private DLT design has an increased influence in the distributed ledger, which increases

vulnerability, for example, toward the blockchain anomaly (cf. Section 2.2) [27]. Thin nodes, which only

store parts of the distributed ledger, must assume that validating nodes verify all blocks and follow a working

incentive mechanism when creating blocks. Otherwise thin nodes risk to accept invalid transactions [123].

End-users who only retrieve data from the distributed ledger and do not verify the distributed ledger’s

integrity on their own (e.g., using simple payment verification) cannot be sure that the distributed ledger’s

transaction history has not been tampered with [124].

In permissioned DLT designs, where only a subset of nodes is permitted to validate transactions and issue

new blocks, the degree of decentralization of a distributed ledger decreases. However, permissioned DLT

designs (and small private-permissionless DLT designs) can make use of consensus mechanisms that

preserve total finality (e.g., PBFT). After total finality has been reached among the validating nodes,

committed transactions cannot be retroactively changed. Hence, the trade-off between degree of

decentralization and integrity predominantly refers to DLT designs that make use of probabilistic finality.

K Policy vs. Practicality

K.1 Degree of Decentralization vs. Transaction Fee

The degree of decentralization comes at the cost of higher transaction fees due to the applied consensus

mechanism. In DLT designs that employ consensus mechanisms with probabilistic finality and rely on leader

election based on PoW (e.g., Nakamoto Consensus), the degree of decentralization is important to ensure

integrity of the stored data. To achieve a high degree of decentralization, permissionless DLT designs are

characterized by extreme openness for new nodes. Arbitrary nodes can join the distributed ledger to

participate in consensus finding and to validate transactions—without requiring permissions. As

computations on blockchains are performed on each node, the total computational effort for the distributed

ledger increases with an increasing number of nodes while the average transaction rate is constant. To

compensate computational efforts, such DLT designs apply an economic incentive mechanism that rewards

nodes for their share of resources [69]. The economic rewards result in a pricing structure that expects

transaction issuers to pay transaction fees for the transaction processing and respective computational efforts.

20

In contrast, various voting-based consensus mechanisms (e.g., PBFT or EOS’s PoS) do not require

transaction fees but allow only for a low degree of decentralization since they are unsuitable for a large

number of validating nodes compared to, for example, Nakamoto consensus. The low degree of

decentralization results from the fact that the applied consensus mechanisms require each node to agree on a

certain state to reach total finality before a new transaction is committed to the distributed ledger. In addition,

such finality-preserving consensus mechanisms are usually less costly than PoW-based consensus

mechanisms in overall costs due to lower consumption of computational resources [107].

L Security vs. Practicality

L.1 Strength of Cryptography vs. Support for Constrained Devices

The strength of cryptography of a DLT design is dependent on the degree of security reached by algorithms

for the generation of public-private key pairs (e.g., to secure authentication), for content encryption (e.g., to

Table 6: Overview of identified trade-offs between DLT characteristics for the

generated archetypes and exemplary DLT designs

 Archetypes Exemplary DLT Designs

Trade-Offs between DLT Characteristics

F
le

x
ib

il
it

y

O
p

a
q

u
e
n

e
ss

P
e
r
fo

r
m

a
n

ce

P
o

li
cy

P
r
a
c
ti

ca
li

ty

S
e
c
u

ri
ty

B
it

co
in

E
th

e
r
e
u

m

H
y

p
er

le
d

g
er

 F
a

b
ri

c

R
C

h
a

in

so
te

ri
a

D
A

G

IO
T

A

N
a

n
o

A B ID

Block Size (+) Transaction Fee (-) G.1 A - - - B A B A A AB B - -

Block Creation Interval (+) Degree of Decentralization (+) F.1 B B A - A B B B A AB AB - -

Stale Block Rate (-) E.1 - - B - A B B A A A AB - -

Confidentiality (+) Integrity (+) M.1 B A B B B A B B A AB B - B

Consistency (+) Availability (+) M.2 B - A A B B B B A B B B B

Confirmation Latency (-) Fault Tolerance (+) H.1 A - A B A B B B A A A A AB

Degree of Decentralization (+) F.2 B B A A A B B B A A A A AB

Degree of Decentralization (+) Integrity (+) J.1 A A B B B A A A B A A B AB

Maintainability (+) I.1 B A B B B B A A B A A A A

Transaction Fee (-) K.1 A A B - B A A A B AB A B AB

Strength of Cryptography (+) Support for Constrained Devices (+) L.1 B A - A* B A A A - A A B B

Maintainability (+) Availability (+) B.1 A - A A B B B B A B B B B

Integrity (+) B.2 A - A A B B B B A B B X B

Node Controller Verification (+) Ease of Node Setup (+) D.1 B B A A B A B B A B B B B

Turing-complete Smart Contracts
(+)

Confidentiality (+) B.3 A B - - A B - A AB AB X X X

Resource Consumption (-) A.1 A - B - B - - A AB AB B B B

Transaction Fee (-) A.2 A - B - B - B A AB A B B B

Transaction Validation Speed (+) A.3 A - B - B - B A A A B B B

Throughput (+) Consistency (+) H.2 A - B B A B B B A AB AB A AB

Degree of Decentralization (+) F.3 A B A - A B B B A AB AB AB AB

Fault Tolerance (+) H.3 A - A B A B B B A AB A - AB

Integrity (+) H.4 A - A B A B B B A AB AB A AB

User Unidentifiability (+) Resource Consumption (+) C.1 B A - - B A - - X B B B B

Throughput (+) C.2 B A B B B B A A B B A B B

 Blockchain BlockDAG TDAG

A: DLT characteristic A outweighs DLT characteristic B

AB: DLT characteristic A and B are both achieved

(trade-off avoided by other means)
-: Trade-off not applicable

(+): DLT characteristics is aimed to be high

B: DLT characteristic B outweighs DLT characteristic A

X: Neither DLT characteristic A nor B are achieved (neither

characteristic seems to be a design goal for the ledger)
*: only signatures

(-): DLT characteristic is aimed to be low

21

protect confidentiality), and for hash value calculation (hashing). For public key encryption it is important

that the key pairs are unique and cannot be guessed. The algorithm’s time complexity is important for

encrypting/signing and decrypting/verifying data. In addition to time complexity in public key encryption,

the applied hash algorithm implies a likelihood for collisions [125]. Low collision likelihood is desirable,

which is why more secure hashing and key generation approaches are required (e.g., more bits for the output

hash). However, an increased strength of cryptography requires more computational resources, such as

random access memory and storage memory [126]. Thus, constrained devices such as microcontrollers can

only hardly handle resource-intensive cryptography [126,127].

M Security vs. Security

M.1 Confidentiality vs. Integrity

To improve confidentiality, DLT designs are often implemented in a private network, where only select nodes

can join (i.e., private DLT designs), for example, a private Ethereum blockchain or Hyperledger Fabric.

However, a small number of known nodes makes it easier to have detailed information on the network

topology. Access to a detailed network topology facilitates initiation of targeted delays in the communication

between nodes because the data flow is known [49]. Thus, the probability for successful partition-based

attacks [49] increases in private, forkable DLT designs such as a private Ethereum blockchain, which

increases the likelihood for violations of a distributed ledger’s immutability. Increased vulnerability for

immutability violations reduces the integrity of a distributed ledger.

M.2 Consistency vs. Availability

Distributed systems theory reveals a trade-off between consistency and availability—the CAP Theorem

[115,128]. This trade-off also persists in the field of DLT and is caused by latency in block propagation, for

example, due to big block sizes or network failures. The larger the number of nodes that must receive new

transactions, the longer the distributed ledger is in an inconsistent state. The larger the number of nodes of a

distributed ledger, the more time it takes until each node has received the new block. However, many

replications of the data stored on the distributed ledger increases availability. Thus, there is a trade-off

between high availability and fast consistency.

4.2 DLT Design Archetypes for Applications on DLT

We introduce six archetypes of DLT designs to illustrate and to consolidate the previously presented trade-

offs. Figure 3 illustrates the identified trade-offs on the DLT-property layer. The archetypes indicate benefits

and drawbacks for applications on DLT that result from the choice and configuration of a DLT design, which

is optimized toward a certain DLT property. Table 6 gives an overview of the identified trade-offs between

DLT characteristics for the archetypes and exemplary DLT designs.

Flexibility Archetype. The flexibility archetype is designed to achieve high degrees of freedom in deploying

applications on and customizing a DLT design. The flexibility archetype for a DLT design is predominantly

characterized by the following five DLT characteristics: support for Turing-complete smart contracts, high

interoperability with various external systems, a high degree of maintainability, a high degree of

decentralization, and high throughput. Turing-complete smart contracts allow for the development of even

complex applications on DLT. Furthermore, such expressive smart contracts are often required to enable

interoperability between distributed ledgers, for example, by using simple payment verification [67]. In

addition, the flexibility archetype must be efficiently maintained to allow for fast bug fixes or updates. In

turn, efficient maintainability also requires an efficient change management, thus, governance mechanisms.

Governance mechanisms pose a challenge in DLT designs with a high degree of decentralization (see trade-

off I.1). However, distributed ledgers of the flexibility archetype should be capable of a high degree of

decentralization to allow nodes to arbitrarily join and leave the distributed ledger; yet, the flexibility

22

archetype should still achieve high throughput to be applicable in a variety of use cases, which may require

high performance (e.g., sensor-based real-time monitoring of a production process).

The use of Turing-complete smart contracts in a distributed ledger with a high degree of decentralization

comes at the cost of resource consumption (see trade-off A.1) and a slower transaction validation speed (see

trade-off A.3). No fixed block size (or transaction size) should be introduced to allow for the deployment of

smart contracts at any size. Accordingly, the flexibility archetype is likely to make use of transaction fees.

The introduction of transaction fees also supports a high degree of decentralization because node controllers

will receive rewards for their share of computing resources. The high degree of decentralization should be

supported by a seamless ease of node setup. Ledgers of the flexibility archetype neglect integrity in favor of

availability (see trade-off B.1) and maintainability (see trade-off B.2), which suggests that public-

permissioned DLT designs could be employed to support efficient maintainability while ensuring a high

availability. In the flexibility archetype, low resource consumption is preferred over user unidentifiability

(see trade-off C.1), to allow for the use of devices that are constrained in their computational resources.

The focus on low resource consumption while supporting Turing-complete smart contracts suggests a need

for thin nodes for constrained devices. Smart contracts should only be executed by full nodes in the

distributed ledger but not by thin nodes. Furthermore, ledgers of the flexibility archetype are likely to apply

sharding to achieve parallel execution of smart contracts and to achieve high throughput and a high degree

of decentralization. A DLT design that aligns with the flexibility archetype has already been proposed for the

Serenity update in the Ethereum protocol, which will divide the network into three distinct shards: transaction

processing shard (Main Chain), consensus shard (Beacon Chain), and smart contract execution shard

(Sharding Chain) [129]. Furthermore, DLT designs that strongly relax their consistency assumptions while

still supporting Turing-complete smart contracts (e.g., RChain) align well with the flexibility archetype [25].

Applications deployed on ledgers of the flexibility archetype may become expensive to use if most of the

logic is performed by smart contracts. In the development of applications on ledgers of the flexibility

archetype, a balance must be maintained between the use of smart contracts and traditional programs to

express and enforce program logic. A balance between use of smart contracts and traditional programs is also

important for maintainability of the respective application. For example, functionalities that are updated

frequently should not be stored on the distributed ledger or in a smart contract. because when the smart

contract needs to be updated it is reset and starts from zero. If a smart contract is used, data stored in it (for

example, a list of user accounts) should be kept in another smart contract that is only used for data storage

and provision. By doing so, smart contract functionality can be maintained, while still keeping its current

state.

Opaqueness Archetype. The opaqueness archetype is specialized to prevent use and operation of a DLT

design to be tracked. This archetype is concerned with the achievement of a high degree of user

unidentifiability, high confidentiality, a high degree of decentralization, and the absence of node controller

verification. Confidentiality and user unidentifiability are the main requirements to be fulfilled by the

opaqueness archetype. A high degree of decentralization is desired to support user unidentifiability. Node

Figure 3: Identified trade-offs between DLT properties

Security

Performance

Opaqueness

Pract icality Flexibility

Policy

M.1-M.2

E.1

H.1-H.4

C.1; C.2

D.1 G.1

L.1

A.1-A.3

B.1-B.3

F.1.-F.3

I.1

J.1
K.1

23

controller verification contradicts with the opaqueness archetype. Therefore, more seamless ease of node

setup is preferred (see trade-off D.1).

Although ledgers of the opaqueness archetype are geared towards ease of node setup instead of node

controller verification, a high ease of node setup and high ease of use, in general, may not be achieved in

ledgers of the opaqueness archetype because the use of additional anonymization mechanisms is often

recommended (e.g., use of the TOR network in Zcash). Such additional anonymization mechanisms may not

be easy to comprehend and to apply for users and can pose a risk for user anonymity. To achieve user

unidentifiability, additional processing of transactions is necessary (e.g., mixing or zero-knowledge proofs).

These processes are time-consuming and require additional computational power, which slows down

performance and can hardly be performed on constrained devices (e.g., microcontrollers or sensors). A high

degree of decentralization increases unidentifiability but increases confirmation latency, thus, impedes

consistency. From a policy point of view, auditability is impaired because transactions are not traceable and

issuers and recipients of a transaction are not identified. The opaqueness archetype is likely to not offer

Turing-complete smart contracts because smart contracts pose a threat to confidentiality and make it easier

to identify transaction senders and receivers and to monitor their interactions (see trade-off B.3) [130].

Applications with a strong requirement for opaqueness should handle most of their advanced business logic

off-chain because the opaqueness archetype will probably provide poor performance and flexibility. Due to

the immutability of stored data, there is a threat of revealing encrypted content as technology evolves.

The opaqueness archetype aligns well with public-permissionless ledgers where multiple cryptographic

techniques are applied (e.g., zero knowledge proofs) to make it as hard as possible to assign transactions to

their senders and receivers or to reveal transaction contents. Popular representatives for the transparency

archetype are Dash [37], Monero [131], and Zcash [59]. In Dash, additional fees must be paid if a transaction

should be issued privately, which decreases practicality in terms of transaction fees. Dash still allows to view

the transaction recipient. In Monero, ring signatures are applied to obfuscate the identity of involved parties

[132]. However, Monero has been criticized for vulnerabilities that eventually make transactions traceable

[133]. Although Zcash does not obfuscate IP addresses of clients, it is currently considered the most

confidentiality-preserving DLT design (especially, when using it over the TOR network).

Performance Archetype. The performance archetype is focused on allowing accomplishment of a given task

on a distributed ledger under most efficient use of computing resources and time. Thus, the performance

archetype is characterized by high throughput, low confirmation latency, low resource consumption, and a

high maintainability. High throughput and confirmation latency can be achieved by keeping the number of

validating nodes small (e.g., by using a private DLT design). A small number of validating nodes supports

maintainability (see trade-off I.1) and can accelerate consistency among all nodes [115,128]. When deciding

for a high degree of decentralization, consistency assumptions would need to be relaxed to achieve high

throughput and scalability (e.g., in IOTA or RChain) [115,128].

DLT designs that align well with the performance archetype are not likely to support user unidentifiability

or Turing-complete smart contracts to decrease the transaction processing time. Due to the short-targeted

confirmation latency, the performance archetype will have lower fault tolerance. To accomplish fast

confirmation latency with total finality, the performance archetype can be realized as a

private(-permissioned) DLT design. Such private DLT designs come at the cost of availability [115,128],

user unidentifiability (see trade-off C.2), the degree of censorship resistance, fault tolerance (see trade-off

H.3), and integrity (see trade-off J.1). In private instantiations of the performance archetype, node controller

verification is required, which decreases the ease of node setup (see trade-off D.1). If ledgers of the

performance archetype should also scale to a huge number of nodes, a public-permissionless DLT design can

be designed based on the blockDAG or the TDAG DLT concept, where consistency assumptions are relaxed

compared to blockchains, which require a certain average block creation interval for synchronization. Such

DLT concepts predominantly come with probabilistic consensus mechanisms that often have higher fault

tolerance, but less integrity.

24

Multiple DLT designs targeting high performance that may follow a private(-permissioned) approach in

blockchains (e.g., Hyperledger Fabric) or rather rely on blockDAGs (e.g., RChain) or TDAGs (e.g., IOTA),

have been developed. To increase performance (especially, scalability of blockchains) sharding is applied,

that is, multiple distributed ledgers exist in parallel and are connected with each other (e.g., in Zilliqa [134]

or Wanchain [135]) [136,137]. Sharding requires interoperability between the DLT designs, which brings

more complexity to the distributed ledger but also better maintainability of the particular distributed ledger.

To sum up, applications requiring high-performance DLT designs have a limited degree of decentralization

or increased complexity due to sharding. New consensus mechanisms are under development (e.g., 𝜀 -

differential agreement), which scale proportional to the number of nodes in the network (e.g., seele [138]).

Policy Archetype. The policy archetype aims to offer a variety of abilities to guide and verify the correct

operation of a DLT design. Thus, ledgers of the policy archetype are likely to make use of node controller

verification to better govern, maintain, and audit the appropriate setup of their nodes. For efficient

governance, various mechanisms are provided to users of ledgers of the policy archetype (e.g., standard smart

contracts for voting). High maintainability in ledgers of the policy archetype allows for the introduction of

updates, which makes the ledgers more flexible and capable to apply changes to the protocol to achieve

compliance with targeted regulations or standards. To check compliance, auditability is important in the

policy archetype. To audit data in the distributed ledgers, fast consistency, high integrity, and non-repudiation

are of particular importance in the policy archetype, just as well as, transaction content visibility and

traceability. Fast consistency among nodes contributes to less contradictions between the statements

represented in the data stored on the nodes, which facilitates the auditing process. In addition, integrity, in

particular, tamper-resistance, of once stored data helps to trace the history of logs (e.g., transfer of assets

between users), which increases the reliability of audits. Finally, non-repudiation is important to be able to

reliably map such logs to users in audits or governance.

The specialization of ledgers regarding the policy archetype predominantly comes at the cost of opaqueness-

related DLT characteristics (i.e., traceability, transaction content visibility, or user unidentifiability) and,

additionally, confidentiality (due to transaction content visibility) and throughput (see trade-off H.2). New

regulations and standards are often introduced, and distributed ledgers must adapt to them to achieve

compliance. Due to the targeted high level of integrity the ex post adaptation of a distributed ledger to reach

compliance becomes challenging. For example, it is not possible to become compliant with the requirements

imposed by the EU General Data Protection (GDPR) [139] if personal data is stored on a distributed ledger

because GDPR demands for a possibility to completely delete personal user data. To increase flexibility in

order to adapt applications on DLT to future regulations or standards, developers must carefully determine

which data should be stored on chain or off chain [139,140]. For now, it remains unclear how to provide

flexibility to become compliant with future regulations or standards and achieve a high level of integrity at

the same time [e.g., 139]. Therefore, sensitive data should be predominantly stored off chain. Nevertheless,

off-chain data stores are administrated by at least one trusted third party, which lowers the degree of

decentralization of applications on DLT. In addition, external data needs to be kept confidential and available

for the distributed ledger. Thus, reliable interoperability of DLT designs with oracles becomes important for

the policy archetype [61]. Furthermore, the oracles themselves must also be compliant with the same laws

and regulations.

Due to its strong requirement for transaction content visibility and traceability, the policy archetype is likely

to be found as a private DLT design. All users are identifiable, and no unknown user is allowed to view the

data stored on the distributed ledger, which increases confidentiality of the data. Furthermore, private DLT

designs allow for better maintainability (see trade-off I.1) and faster consistency (see trade-off M.2)

compared to public-permissionless DLT designs.

Practicality Archetype. Ledgers of the practicality archetype are designed to allow their users to achieve

their goals with respect to social expectations on technology in everyday practice. Thus, DLT designs that

align well with the practicality archetype offer high throughput and a low confirmation latency to achieve

low response time (under consideration of transaction finalization), high support for constrained devices, and

25

low transaction fees. In addition, the practicality archetype also provides Turing-complete smart contracts to

allow for interoperability with other distributed ledgers [67] or non-DLT systems [61].

Despite the benefits of the practicality archetype, there are several drawbacks. Various public-permissionless

DLT designs incentivize nodes to share resources with monetary mechanisms to reach a high degree of

decentralization (see trade-off K.1). A high degree of decentralization and openness for new users of the

distributed ledger is also targeted in ledgers of the practicality archetype. To make applications on DLT

easily-usable by a large number of users that interact with the distributed ledger via a broad variety of devices

including constrained devices such as sensors, a full replication of the ledger on each device should be

avoided and ledgers of the practicality archetype should allow for the use of thin nodes. The requirements

for high scalability, high throughput, and fast confirmation latency indicate that ledgers of the practicality

archetype likely have poor fault tolerance (see trade-off H.3) and the consistency assumptions need to be

relaxed (see trade-off H.2). Furthermore, the pragmatism comes at the cost of confidentiality (see trade-

off M.1) and user unidentifiability (see trade-offs C.1 and C.2).

Ledgers of the practicality archetype ensure that users do not need to have sound knowledge of DLT before

using it, while allowing them to easily interact with the distributed ledger. Therefore, users of ledgers of the

practicality archetype will usually not host their own node but will be offered other gateways to interact with

the ledger through. The ledgers are operated by a consortium as (private- or public-) permissioned distributed

ledgers. Because a private key cannot be recovered, users can no longer access their assets if they lose their

private key. Therefore, the management of a public-private key pair should be made easy and secure for

users, which is why the provision of secure tools for the organization of users’ public and private keys is

crucial. Exemplary DLT design that align with the practicality archetype are Hyperledger Fabric and EOS

(see Table 1).

Security Archetype. The security archetype provides a high likelihood that the functioning of the distributed

ledger and stored data will not be compromised. To achieve this goal, DLT designs are optimized toward

high availability, high fault tolerance, high integrity, and high confidentiality, which may even include user

unidentifiability to inhibit the mapping of data to identities. To achieve strong integrity and fault tolerance,

the degree of decentralization should be high,

High availability can be achieved by adding numerous, physically distributed nodes to the distributed ledger,

each maintaining a replication of the ledger. While large network size is comparably easy to achieve,

achieving a high degree of decentralization is more challenging. However, the degree of decentralization is

a focal requirement in the security archetype (e.g., trade-offs B.1 or J.1). The degree of decentralization does

not merely result from the DLT protocol. Instead, it predominantly depends on socio-technical phenomena,

such as (ad-hoc) consortia of validating node controllers (e.g., mining pools; see Figure 2). Avoiding such

consortia poses a particular challenge in the instantiation of the security archetype. Due to its high

requirements for confidentiality, the security archetype is likely to require additional techniques that make

the identification of users difficult (see opaqueness archetype). Such mechanisms come at the cost of

increased resource consumption and less support for constrained devices (see trade-off C.1). The use of

anonymization techniques (e.g., zero knowledge proofs) may cause serious security issues because it is hard

to audit the distributed ledger due to decreased traceability (e.g., by applying mixing) and decreased

transaction content visibility (e.g., by encryption).

Due to inherent trade-offs within the security archetype (e.g., trade-offs M.1 and M.2), DLT designs that

correspond to the security archetype are likely to either achieve security through decentralization or security

through permission. The first aims to achieve a huge number of independent node controllers, which

increases absolute fault tolerance (tolerable number of malicious nodes). The most prominent DLT design

that follows the approach of security through decentralization is the Bitcoin blockchain [23]. The Bitcoin

blockchain is highly available due to its high number of nodes and hardly offers potential for flawed smart

contracts. Nevertheless, Bitcoin does not fulfill all the security-related DLT characteristics (e.g.,

confidentiality). To increase confidentiality, Zcash applied zero-knowledge succinct non-interactive

26

arguments of knowledge (zk-SNARKs) to obfuscate transaction senders (and receivers) and to impede

transaction traceability. However, the added complexity of zk-SNARK has already caused a counterfeiting

vulnerability for Zcash coins [141], which indicates that such techniques also allow for new vulnerabilities.

Security through permission aims at limiting access to the distributed ledger to known users, which increases

maintainability of the distributed ledger at the cost of its degree of decentralization (see trade-off I.1).

Considering the advances in computer science, which could even break encryption (e.g. quantum computers),

security through permission should achieve better confidentiality in the future.

5 Discussion

5.1 Principle Findings

Our research reveals twenty-four trade-offs (see Table 6) based on forty identified DLT characteristics (see

Table 5), which we grouped into six DLT properties (see Table 4). The diversity of the identified DLT

characteristics from purely technical (e.g., strength of cryptography in security) to social (e.g., degree of

decentralization in policy) highlights the complexity of DLT. Among the abstracted trade-offs, the DLT

properties performance and security each exhibit the most trade-offs (11) (see Figure 3 and Table 6). Purely

performance- or security-oriented DLT designs appear to be challenging and maybe even impossible to be

developed because of trade-offs between DLT characteristics within the respective DLT property (see

performance and security archetype).

The consolidation of the identified trade-offs between DLT characteristics into archetypes elucidates that it

is not possible to develop a one-size-fits-all DLT design that fulfills all requirements of each application.

Thus, application designers will have to wisely choose a DLT design when aiming to develop viable

applications on DLT. Nevertheless, the derived archetypes partially support each other (e.g., opaqueness and

security), while others contradict (e.g., performance vs. security). This phenomenon can also be seen as an

indicator of compatibility between DLT designs. The preference of one DLT characteristic over another in a

trade-off is critical. For example, the security archetype can benefit from certain features of DLT designs

leveraging the opaqueness archetype, these DLT designs can even benefit from each other if they were

combined. To jointly use DLT designs that have made contradicting decisions in the trade-offs,

interoperability between DLT designs is required because otherwise they could not synchronize. For

example, DLT designs that are matched to the performance archetype are difficult to link to DLT designs

that are matched to the security archetype.

Several identified trade-offs are inherent to distributed systems, for example, those related to the CAP

theorem [10,115] (see trade-off M.2) or the FLP impossibility [142] (see trade-off H.1). However, the

implications of these trade-offs on DLT designs differ from commonly used distributed databases, where

mostly a known number of nodes is employed, and consensus mechanisms are predominantly crash fault-

tolerant but not Byzantine fault-tolerant (e.g., Paxos [143] or Raft [144]). In DLT, implications of such design

decisions do not only impede consistency of the distributed ledger but may have serious (financial)

consequences that result from inconsistencies (e.g., form forks) and successful attacks that make use of

inconsistencies to weaken a distributed ledger’s integrity (e.g., double spending).

The analyzed literature showed a trend toward preferring private DLT designs over public DLT designs for

industrial applications. The shift from pure decentralization through a high degree of openness (e.g., Bitcoin

and Ethereum) toward more centralization seems largely motivated by improvements in performance due to

the employment of faster consensus mechanisms, and enhancement of confidentiality due to restricted access

to the ledger. Nevertheless, there is much criticism on this shift, specifically, because it contradicts with

DLT’s original philosophy. Similarly, this shift aligns with our observation that most trade-offs between DLT

characteristics are related to the DLT characteristics security or performance. Private DLT designs come

with various advantages compared to public DLT designs with respect to practicality but tend to reach a low

degree of decentralization compared to public DLT designs. Furthermore, private DLT designs strongly

require universal interoperability with other DLT designs or external services to prevent being caught on a

‘blockchain island’ [145–148]. Furthermore, there are various DLT designs of the DLT concepts BlockDAG

27

and TDAG that incorporate rather loose structures based on DAGs (e.g., IOTA, Nano, or RChain). These

DLT designs relax consistency assumptions in favor of high throughput and consensus algorithms that

consume less resources compared to most blockchains (e.g., Bitcoin or Ethereum). Nevertheless, support of

Turing-complete smart contracts is not yet widespread, which limits flexibility of several DAGs.

DLT designs such as Nano and RChain even advance the use of DAGs in DLT by not rigorously applying

the concept of replicated state machines in favor of less storage consumption. In Nano, only personal

transactions are, for example, stored on the terminal device. In RChain, DLT is, for example, strongly

connected with peer-to-peer file sharing, which is also targeted in other projects such as Ethereum’s Swarm.

The integration of such external data allows for the extensive use of (unreliable) data sources and may

announce the birth of a new generation of peer-to-peer systems in general, where DLT might take an

important position by allowing for asset exchanges and tamper-resistant proofs of such asset exchanges.

5.2 Main Lessons to be Learned

Our work provides diverse contributions to research and practice. Regarding the latter, practitioners obtain

deep insights into viability of DLT designs for applications on DLT and their possible impacts on

organizations. Our work supports the decision making for a DLT design and its later configuration to use for

applications on DLT under consideration of application requirements and DLT characteristics. The overview

of DLT characteristics and DLT properties supports practitioners in defining requirements for DLT designs

that must be considered in the requirements engineering process to ensure viability of applications on DLT.

The derived trade-offs between DLT characteristics and the generated archetypes suggest potential benefits

and drawbacks for applications on DLT, which can be assessed before starting to develop the application (see

Table 6). Such assessments eventually facilitate avoidance of unsuitable DLT designs and consequent waste

of resources. To understand causes of such drawbacks for applications on DLT, the described trade-offs

between DLT characteristics provide rationale (see Section 4.1). Careful DLT design selection and

application development becomes crucial to ensure that DLT’s unique advantages can be achieved,

ultimately, pushing DLT from a hype to a critical information infrastructure [149] for future businesses and

societies.

Our synthesis of the four previously disconnected research streams on DLT (description, analysis,

application, and guidance) bridges different research streams in DLT, thus, contributes to a more holistic

view of DLT. The description research stream on DLT is consolidated in this work with a strong focus on

applications on DLT. Our classification of DLT characteristics can be used to generate a common

understanding of important terms in the field of DLT and their technical dependencies across research fields,

such as economics or computer science. Our findings support the development of comprehensive models and

simulations of DLT designs, which has only partially been approached so far [e.g., 150,151]. The results of

such analyses (e.g., formalization of dependencies between DLT characteristics) will elucidate assessments

of the influence of the identified trade-offs between DLT characteristics on applications on DLT. Research

on the application of DLT is supported in decision making for a particular DLT design. Research on business

process innovation using DLT, for example, can draw from the trade-offs and archetypes to discuss possible

negative effects of the integration of DLT. Furthermore, we contribute to research on software engineering

and requirements engineering in distributed systems since a holistic view on non-functional requirements can

be obtained. Finally, we support the DLT research stream guidance by introducing the archetypes of DLT

design. The archetypes of DLT design form a fundament for a preselection of DLT designs for applications

and can support the selection of an appropriate DLT design [e.g., 71] to make the selection of a DLT design

more efficient.

5.3 Limitations

Nevertheless, our study comes with limitations. DLT characteristics and DLT properties were identified in a

literature review in the field of DLT. Analyzed DLT concepts are limited to already published scientific

articles and mainly focused on blockchain. Therefore, we limit our overview of DLT characteristics to those

of particular interest in extant research on DLT for the development of applications. The DLT characteristics

28

and related trade-offs are also corroborated by multiple whitepapers of DLT designs such as Bitcoin [31],

Ethereum [36], or soteriaDAG [26] (see Table 6). Most of the analyzed research articles in the application

research stream developed applications on Bitcoin, Ethereum, or Hyperledger Fabric. This makes our work,

the trade-offs in particular, only partially generalizable to other DLT designs. We tried to overcome this

limitation by including feedback from several DLT experts in a survey and illustrate the generalizability of

the identified trade-offs between DLT characteristics by applying them to DLT designs of all three DLT

concepts known so far. There are preliminary approaches for the analysis and formalization of DLT concepts

for the development of frameworks for the simulation of DAGs [e.g., 151]. However, we could not identify

trade-offs between DLT characteristics that are specific for BlockDAGs and TDAGs based on the reviewed

literature. While we analyzed dependencies between DLT characteristics, we predominantly focused on

potential negative effects and resulting trade-offs. We acknowledge that dependencies might also lead to

synergistic and positive effects.

5.4 Future Research

We identified multiple very influential conditions that impact the strength of certain dependencies or even

the presence of trade-offs between DLT characteristics such as the applied consensus mechanism or the use

of additional services such as mixing (e.g., regarding the trade-off unidentifiability vs. throughput (C.1)).

Thus, researchers of the analysis research stream should conduct measurements to quantify the identified

trade-offs between DLT characteristics under different conditions. The analysis should include other DLT

concepts than blockchain to reveal dependencies between DLT characteristics for different DLT concepts.

Such analyses support the quantification of the dependencies between DLT characteristics, which can be

used to quantify the influence of the particular trade-offs between DLT characteristics. Quantified trade-offs

would support the development of decision support systems for the selection of DLT designs for applications

in the guidance research stream. Based on a quantified model of the trade-offs, monitoring-systems for

distributed ledgers can be developed, which can use the generated trade-offs to predict the behavior of a

distributed ledger. Researchers of applications on DLT can further investigate how to design decision-

support and monitoring applications for DLT.

As the identified archetypes inhibit simultaneous optimization of certain DLT characteristics due to DLT-

inherent trade-offs, interoperability between DLT designs (cross-chain technology) turns out an important

avenue for future research in the field of DLT to overcome prevalent issues in DLT [e.g., scalability,

throughput, or lack of smart contracts 67,152]. Research on cross-chain technology is still in its infancy and

is, for example, concerned with the transfer of assets from one distributed ledger to another [145]. Cross-

chain technology can increase flexibility of DLT designs and might help to mitigate the inherent trade-offs

through multi-chain networks, which are allow for the benefits of any DLT design while avoiding the

drawbacks through clever cross-chain technology.

5.5 Conclusion

Reading this manuscript underpins the notion that there cannot be a one-size-fits-all DLT design due to

dependencies and consequent trade-offs between DLT characteristics. Since it is difficult to consider all the

trade-offs and their particular impact at once, this manuscript introduces archetypes of DLT designs and

illuminates twenty-four prevalent trade-offs in DLT designs. The archetypes of DLT designs support

practitioners in understanding causes of benefits and drawbacks of particular applications on DLT, which

will result from the selected DLT design. The trade-offs and their consolidation into archetypes make the

challenges inherent in the configuration of a DLT design more transparent for developers and are useful to

prevent wrong decisions before choosing a DLT design. Beyond Blockchain, our survey article suggests that

the true potential of DLT might lie in decentralization of applications that are not as restrictive as Bitcoin

transactions while still empowering the individual. We wrote this survey article in the hope that it will be

helpful to successfully navigate this future transformation.

29

ACKNOWLEDGEMENTS

This work was carried out in the scope of the project COOLedger (Helmholtz Association of German

Research Centers: HRSF-0081, Russian Science Foundation: Project No. 19-41-06301). We thank all

participants of the empirical studies that contributed to this work. In particular, we would like to thank Mikael

Beyene and Konstantin Pandl for taking the time to discuss the trade-offs based on the archetypes and selected

DLT designs.

REFERENCES

[1] Steven R. Kursh and Natalia A. Gold. 2016. Adding FinTech and Blockchain to Your Curriculum. Business

Education Innovation Journal 8, 2 (2016), 6–12.

[2] Feng Tian. 2016. An agri-food supply chain traceability system for China based on RFID & blockchain

technology. In 2016 13th International Conference on Service Systems and Service Management, 1–6.

[3] Filip Caron. 2018. The Evolving Payments Landscape: Technological Innovation in Payment Systems. IT

Professional 20, 2 (March 2018), 53–61.

[4] Gaby G. Dagher, Jordan Mohler, Matea Milojkovic, and Praneeth Babu Marella. 2018. Ancile: Privacy-

preserving framework for access control and interoperability of electronic health records using blockchain

technology. Sustainable Cities and Society 39, (2018), 283–297.

[5] Tomi Lehikoinen. 2018. Food Supply Chain This summer, fishing in Finland means food traceability on the

menu. IBM Blockchain Blog. Retrieved January 4, 2019 from

https://www.ibm.com/blogs/blockchain/2018/07/this-summer-fishing-in-finland-means-food-traceability-

on-the-menu/

[6] Xueping Liang, Sachin Shetty, Deepak Tosh, Charles Kamhoua, Kevin Kwiat, and Laurent Njilla. 2017.

ProvChain: A Blockchain-based Data Provenance Architecture in Cloud Environment with Enhanced

Privacy and Availability. In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid ’17), 468–477.

[7] Ingo Weber, Vincent Gramoli, Alex Ponomarev, Mark Staples, Ralph Holz, An Binh Tran, and Paul Rimba.

2017. On Availability for Blockchain-Based Systems. In 2017 IEEE 36th Symposium on Reliable Distributed

Systems, 64–73. Retrieved May 20, 2019 from http://ieeexplore.ieee.org/document/8069069/

[8] Igor Zikratov, Alexander Kuzmin, Vladislav Akimenko, Viktor Niculichev, and Lucas Yalansky. 2017.

Ensuring data integrity using blockchain technology. In 2017 20th Conference of Open Innovations

Association, 534–539.

[9] Niclas Kannengießer, Sebastian Lins, Tobias Dehling, and Ali Sunyaev. 2019. What Does Not Fit Can be

Made to Fit! Trade-Offs in Distributed Ledger Technology Designs. In 52nd Hawaii International

Conference on System Sciences.

[10] Eric Alan Brewer. 2000. Towards robust distributed systems (abstract). In Proceedings of the 19th Annual

ACM Symposium on Principles of Distributed Computing (PODC ’00), 7.

[11] Johannes Göbel and Anthony E. Krzesinski. 2017. Increased block size and Bitcoin blockchain dynamics.

In 2017 27th International Telecommunication Networks and Applications Conference, 1–6.

[12] Nejc Zupan, Kaiwen Zhang, and Hans-Arno Jacobsen. 2017. Hyperpubsub: a decentralized, permissioned,

publish/subscribe service using blockchains: demo. In 18th ACM/IFIP/USENIX Middleware Conference:

Posters and Demos, 15–16.

[13] Jude Nelson, Muneeb Ali, Ryan Shea, and Michael J. Freedman. 2016. Extending Existing Blockchains with

Virtualchain. Retrieved May 16, 2019 from https://www.zurich.ibm.com/dccl/papers/nelson_dccl.pdf

[14] Florian Glaser and Luis Bezzenberger. 2015. Beyond Cryptocurrencies - A Taxonomy of Decentralized

Consensus Systems. In 23rd European Conference on Information Systems, 1–18.

[15] Karl Wüst and Arthur Gervais. 2017. Do you need a Blockchain? Retrieved May 16, 2019 from

https://eprint.iacr.org/2017/375.pdf

[16] Ittay Eyal and Emin Gün Sirer. 2014. Majority is not Enough: Bitcoin Mining is Vulnerable. In Financial

Cryptography and Data Security, Nicolas Christin and Reihaneh Safavi-Naini, (eds.). Retrieved from

http://arxiv.org/abs/1311.0243

[17] Qassim Nasir, Ilham A. Qasse, Manar Abu Talib, and Ali Bou Nassif. 2018. Performance Analysis of

Hyperledger Fabric Platforms. Security and Communication Networks 2018, (September 2018), 1–14.

[18] J.P. Morgan Chase & Co. 2018. J.P. Morgan Interbank Information NetworkSM Expands to More than 75

Banks. Retrieved March 12, 2019 from

https://web.archive.org/save/https://www.jpmorgan.com/country/US/en/detail/1320570135560

30

[19] Kaiwen Zhang and Hans-Arno Jacobsen. 2018. Towards Dependable, Scalable, and Pervasive Distributed

Ledgers with Blockchains. In 2018 IEEE 38th International Conference on Distributed Computing Systems,

1337–1346.

[20] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Generals Problem. ACM

Transactions on Programming Languages and Systems 4, 3 (1982), 382–401.

[21] Ali Sunyaev. 2019. Distributed Ledger Technology. In Internet Computing: Principles of Distributed

Systems and Emerging Internet-based Technologies (1st ed.). 265–292.

[22] Vitalik Buterin. 2018. Ethereum Whitepaper. Retrieved January 3, 2019 from

https://github.com/ethereum/wiki/wiki/White-Paper/f18902f4e7fb21dc92b37e8a0963eec4b3f4793a

[23] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved June 11, 2018 from

https://bitcoin.org/bitcoin.pdf

[24] Garrick Hileman and Michel Rauchs. 2017. 2017 Global Blockchain Benchmarking Study. SSRN Electronic

Journal (2017).

[25] Ede Eykholt, Lucius Gregory Meredith, and Joseph Denman. 2017. RChain Architecture Documentation -

Release 0.8.1. Retrieved January 19, 2019 from https://buildmedia.readthedocs.org/media/pdf/rchain-

architecture/stable/rchain-architecture.pdf

[26] soteria lab. 2019. soteriaDAG - Soteria DAG Project. Github. Retrieved November 20, 2019 from

https://github.com/soteria-dag/soterd/blob/master/docs/README.md

[27] Christopher Natoli and Vincent Gramoli. 2016. The Blockchain Anomaly. In 2016 IEEE 15th International

Symposium on Network Computing and Applications, 310–317.

[28] GoChain Foundation. 2019. Official GoChain Documentation. Retrieved May 16, 2019 from

https://web.archive.org/web/20190516083054/https://github.com/gochain-io/docs

[29] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo De Caro,

David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet

Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula

Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason Yellick. 2018. Hyperledger Fabric: A

Distributed Operating System for Permissioned Blockchains. In 13th EuroSys Conference, 1–15.

[30] All In Bits, Inc. 2019. Tendermint Documentation. Retrieved May 16, 2019 from

https://tendermint.com/docs/introduction/

[31] EOS.IO. 2018. EOS.IO Technical White Paper v2. Retrieved March 12, 2019 from

https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md

[32] Colin LeMahieu. 2018. Nano: A Feeless Distributed Cryptocurrency Network. Retrieved July 20, 2019 from

https://nano.org/en/whitepaper

[33] Hyperledger. 2017. hyperledger-fabricdocs Documentation Release v0.6. Retrieved May 10, 2018 from

https://buildmedia.readthedocs.org/media/pdf/hyperledger-fabric/v0.6/hyperledger-fabric.pdf

[34] Cody Born. 2018. Ethereum Proof-of-Authority on Azure. Microsoft Azure. Retrieved May 15, 2019 from

https://web.archive.org/web/20190501134839/https://azure.microsoft.com/en-us/blog/ethereum-proof-of-

authority-on-azure/

[35] Dan Middleton. 2016. Meet Sawtooth Lake. Hyperledger Sawtooth. Retrieved May 15, 2019 from

https://web.archive.org/save/https://www.hyperledger.org/blog/2016/11/02/meet-sawtooth-lake

[36] GoChain. 2018. Proof of Reputation. Retrieved February 21, 2019 from https://medium.com/gochain/proof-

of-reputation-e37432420712

[37] Evan Duffield and Daniel Dia. 2019. Dash: A Privacy­-Centric Crypto­Currency. Retrieved May 16, 2019

from https://whitepaperdatabase.com/wp-content/uploads/2017/09/Dash-Whitepaper.pdf

[38] Serguei Popov. 2018. The Tangle. Retrieved June 11, 2018 from

https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/i

ota1_4_3.pdf

[39] Rafael Pass and Elaine Shi. 2017. The Sleepy Model of Consensus. In Advances in Cryptology – ASIACRYPT

2017, 380–409.

[40] Kenji Saito and Yamada Hairoyuki. 2016. What’s So Different about Blockchain? — Blockchain is a

Probabilistic State Machine. In 2016 IEEE 36th International Conference on Distributed Computing Systems

Workshops, 168–175.

[41] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In Proceedings of the Third

Symposium on Operating Systems Design and Implementation (OSDI ’99), 173–186.

[42] Demiro Massessi. 2018. Public Vs Private Blockchain In A Nutshell. Medium. Retrieved May 5, 2019 from

https://medium.com/coinmonks/public-vs-private-blockchain-in-a-nutshell-c9fe284fa39f

[43] Paige Cabianca. 2018. What’s the difference between Public, Private and Permissioned Blockchains?

Medium. Retrieved May 5, 2019 from https://medium.com/nakamo-to/whats-the-difference-between-a-

public-and-a-private-blockchain-c08d6d1886a0

31

[44] Zibin Zheng, Shaoan Xie, Hong Ning Dai, Xiangping Chen, and Huaimin Wang. 2018. Blockchain

challenges and opportunities: a survey. International Journal of Web and Grid Services 14, 4 (2018), 352.

[45] J.P. Morgan Chase & Co. 2016. Quorum Whitepaper. Retrieved May 16, 2019 from

https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf

[46] ARK.io. 2019. ARK Ecosystem Whitepaper. Retrieved May 16, 2019 from https://ark.io/Whitepaper.pdf

[47] Tom Rodgers. 2019. Ethereum Classic Price Roaring Just Weeks After 51% Attack. Retrieved May 23, 2019

from https://www.forbes.com/sites/tomrodgers1/2019/04/08/ethereum-classic-price-roaring-just-weeks-

after-51-attack/#2906e2a6f7ef

[48] Markus Jakobsson and Ari Juels. 1999. Proofs of Work and Bread Pudding Protocols. In IFIP TC6/TC11

Joint Working Conference on Secure Information Networks: Communications and Multimedia Security

(CMS ’99), 258–272.

[49] Christopher Natoli and Vincent Gramoli. 2017. The Balance Attack or Why Forkable Blockchains are Ill-

Suited for Consortium. In 47th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks, 579–590.

[50] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse Attacks on Bitcoin’s Peer-

to-peer Network. In Proceedings of the 24th USENIX Conference on Security Symposium (SEC’15), 129–

144.

[51] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. 2017. Hijacking Bitcoin: Routing Attacks on

Cryptocurrencies. In 2017 IEEE Symposium on Security and Privacy, 375–392.

[52] Joseph Bonneau. 2016. Why Buy When You Can Rent? Bribery attacks on Bitcoin-style consensus. In

International Conference on Financial Cryptography and Data Security, 19–26.

[53] Johannes Göbel, Paul Keeler, Anthony E. Krzesinski, and Peter G. Taylor. 2016. Bitcoin blockchain

dynamics: The selfish-mine strategy in the presence of propagation delay. Performance Evaluation 104,

(October 2016), 23–41.

[54] Evangelos Deirmentzoglou, Georgios Papakyriakopoulos, and Constantinos Patsakis. 2019. A Survey on

Long-Range Attacks for Proof of Stake Protocols. IEEE Access 7, (2019), 28712–28725.

[55] John R. Douceur. 2002. The Sybil Attack. In Revised Papers from the First International Workshop on Peer-

to-Peer Systems (IPTPS ’01), 251–260.

[56] Pim Otte, Martijn de Vos, and Johan Pouwelse. 2017. TrustChain: A Sybil-resistant scalable blockchain.

Future Generation Computer Systems (2017).

[57] Brian Neil Levine, Clay Shields, and N Boris Margolin. 2005. A Survey of Solutions to the Sybil attack.

[58] Patrick Dai, Neil Mahi, Jordan Earls, and Alex Norta. 2017. Smart-Contract Value-Transfer protocol on a

Distributed Mobile Application Platform. Retrieved May 4, 2019 from

https://web.archive.org/web/20190506095324/https://qtum.org/user/pages/01.home/Qtum%20whitepaper_

en%20v0.7.pdf

[59] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2018. Zcash Protocol Specification.

Retrieved May 5, 2019 from https://whitepaperdatabase.com/wp-content/uploads/2018/03/z-cash-zec-

whitepaper.pdf

[60] Howard Shrobe, David L. Shrier, and Alex Pentland. 2018. CHAPTER 15 Enigma: Decentralized

Computation Platform with Guaranteed Privacy. In New Solutions for Cybersecurity. 504.

[61] Jonathan Heiss, Jan Eberhardt, and Stefan Tai. 2019. From oracles to Trustworthy Data On-chaining

Systems. Retrieved October 29, 2019 from https://www.redaktion.tu-

berlin.de/fileadmin/fg308/publications/2019/Heiss-et-al-oracles_preprint.pdf

[62] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2018.

MadMax: surviving out-of-gas conditions in Ethereum smart contracts. Proceedings of the ACM on

Programming Languages 2, OOPSLA (October 2018), 1–27.

[63] Maximilian Wöhrer and Uwe Zdun. 2018. Smart contracts: security patterns in the ethereum ecosystem and

solidity. In 2018 International Workshop on Blockchain Oriented Software Engineering, 2–8.

[64] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2016. A survey of attacks on Ethereum smart

contracts. Retrieved May 16, 2019 from https://allquantor.at/blockchainbib/pdf/atzei2016survey.pdf

[65] Xiangfu Zhao, Zhongyu Chen, Xin Chen, Yanxia Wang, and Changbing Tang. 2017. The DAO attack

paradoxes in propositional logic. In 4th International Conference on Systems and Informatics, 1743–1746.

Retrieved April 6, 2018 from http://ieeexplore.ieee.org/document/8248566/

[66] Peter Vessenes. 2016. Ethereum Griefing Wallets: Send w/Throw Is Dangerous. Retrieved January 14, 2019

from https://web.archive.org/web/20190114181554/https://vessenes.com/ethereum-griefing-wallets-send-

w-throw-considered-harmful/

[67] Niclas Kannengießer, Michelle Pfister, Malte Greulich, Sebastian Lins, and Ali Sunyaev. 2020. Bridges

Between Islands: Cross-Chain Technology for Distributed Ledger Technology. In Proceedings of the 53rd

Hawaii International Conference on System Sciences.

32

[68] Paolo Tasca and Claudio Tessone. 2019. A Taxonomy of Blockchain Technologies: Principles of

Identification and Classification. Ledger 4, (2019).

[69] Xiwei Xu, Ingo Weber, Mark Staples, Liming Zhu, Jan Bosch, Len Bass, Cesare Pautasso, and Paul Rimba.

2017. A Taxonomy of Blockchain-Based Systems for Architecture Design. In IEEE International

Conference on Software Architecture, 243–252. Retrieved April 11, 2018 from

http://ieeexplore.ieee.org/document/7930224/

[70] Seyoung Huh, Sangrae Cho, and Soohyung Kim. 2017. Managing IoT devices using blockchain platform.

In 19th International Conference on Advanced Communication Technology, 464–467.

[71] Morgen E. Peck. 2017. Blockchain world - Do you need a blockchain? This chart will tell you if the

technology can solve your problem. IEEE Spectrum 54, 10 (October 2017), 38–60.

[72] Andreas Unterweger, Fabian Knirsch, Christoph Leixnering, and Dominik Engel. 2018. Lessons Learned

from Implementing a Privacy-Preserving Smart Contract in Ethereum. In 9th IFIP International Conference

on New Technologies, Mobility and Security, 1–5.

[73] Merve Can Kus Khalilov and Albert Levi. 2018. A Survey on Anonymity and Privacy in Bitcoin-like Digital

Cash Systems. IEEE Communications Surveys & Tutorials (2018), 1–44.

[74] Bogdan Cristian Florea. 2018. Blockchain and Internet of Things data provider for smart applications. In

2018 7th Mediterranean Conference on Embedded Computing, 1–4.

[75] Ripple. 2017. Solution Overview. Retrieved May 16, 2019 from https://whitepaperdatabase.com/wp-

content/uploads/2017/09/Ripple-XRP-Whitepaper.pdf

[76] Runchao Han, Vincent Gramoli, and Xiwei Xu. 2018. Evaluating Blockchains for IoT. In 2018 9th IFIP

International Conference on New Technologies, Mobility and Security, 1–5.

[77] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-Lee Tan. 2017.

BLOCKBENCH: A Framework for Analyzing Private Blockchains. In ACM International Conference on

Management of Data (SIGMOD ’17), 1085–1100.

[78] Florian Gräbe, Niclas Kannengießer, Sebastian Lins, and Ali Sunyaev. 2020. Do Not Be Fooled: Towards a

Holistic Comparison of Distributed Ledger Technology Designs. In Proceedings of the 53th Hawaii

Internantional Conference on System Sciences.

[79] Odhran O’Donoghue, Anuraag A. Vazirani, David Brindley, and Edward Meinert. 2019. Design Choices

and Trade-Offs in Health Care Blockchain Implementations: Systematic Review. Journal of Medical Internet

Research 21, 5 (May 2019), e12426.

[80] Jan vom Brocke, Alexander Simons, Kai Riemer, Bjoern Niehaves, and Ralf Platfaut. 2015. Standing on the

Shoulders of Giants: Challenges and Recommendations of Literature Search in Information Systems

Research. Communications of the AIS 37, 9 (2015), 205–224.

[81] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey, and Stephen Linkman.

2009. Systematic Literature Reviews in Software Engineering. Information and Software Technology 51, 1

(2009), 7–15.

[82] Guy Paré, Marie Claude Trudel, Mirou Jaana, and Spyros Kitsiou. 2015. Synthesizing information systems

knowledge: A typology of literature reviews. Information and Management 52, 2 (2015), 183–199.

[83] Jane Webster and Richard T. Watson. 2002. Analyzing the Past to Prepare for the Future. MIS Quarterly 26,

2 (2002), xiii–xxiii.

[84] Gavin Wood. 2016. Polkadot. Retrieved from https://icowhitepapers.co/wp-content/uploads/PolkaDot-

Whitepaper.pdf

[85] Shilan Yang, Huaimin Wang, Wei Li, Wei Liu, and Xiang Fu. 2018. CVEM: A Cross-chain Value Exchange

Mechanism. In 2018 International Conference on Cloud Computing and Internet of Things, 80–85.

[86] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town Crier: An Authenticated

Data Feed for Smart Contracts. In 2016 ACM SIGSAC Conference on Computer and Communications

Security (CCS ’16), 270–282.

[87] Mary C. Lacity, Shaji Khan, Aihua Yan, and Leslie P. Willcocks. 2010. A review of the IT outsourcing

empirical literature and future research directions. Journal of Information Technology 25, 4 (2010), 395–

433.

[88] Mildred L.G. Shaw and Brian R. Gaines. 1989. Comparing conceptual structures: consensus, conflict,

correspondence and contrast. Knowledge Acquisition 1, 4 (December 1989), 341–363.

[89] Juliet M. Corbin and Anselm L. Strauss. 2015. Basics of qualitative research: techniques and procedures for

developing grounded theory (4th ed.).

[90] Barney G. Glaser and Anselm L. Strauss. 2009. The discovery of grounded theory: strategies for qualitative

research (4. paperback printing ed.).

[91] Martin Davis. 1982. Computability & Unsolvability (Dover ed ed.).

[92] Mingjun Dai, Shengli Zhang, Hu Wang, and Shi Jin. 2018. A Low Storage Room Requirement Framework

for Distributed Ledger in Blockchain. IEEE Access 6, (2018), 22970–22975.

33

[93] NewsBTC. 2018. Increased SegWit Adoption for Bitcoin, is Lightning Network Next? NewsBTC. Retrieved

April 9, 2019 from

https://web.archive.org/web/20190410173449/https://www.newsbtc.com/2018/03/01/segwit-adoption-

lightning-network-increases-bitcoin/

[94] Deepak Puthal, Nisha Malik, Saraju P. Mohanty, Elias Kougianos, and Chi Yang. 2018. The Blockchain as

a Decentralized Security Framework [Future Directions]. IEEE Consumer Electronics Magazine 7, 2 (March

2018), 18–21.

[95] Michael Coblenz. 2017. Obsidian: A Safer Blockchain Programming Language. In Proceedings of the 39th

International Conference on Software Engineering Companion (ICSE-C ’17), 97–99.

[96] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. 2016. Hawk: The

Blockchain Model of Cryptography and Privacy-Preserving Smart Contracts. In 2016 IEEE Symposium on

Security and Privacy, 839–858.

[97] Ittai Anati, Shay Gueron, Simon P. Johnson, and Vincent R. Scarlata. 2014. Innovative Technology for CPU

Based Attestation and Sealing. In Proceedings of the 2nd International Workshop on Hardware and

Architectural Support for Security and Privacy.

[98] oraclize. 2019. oraclize Documentary. Retrieved May 21, 2019 from https://provable.xyz/

[99] Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen. 2017. A survey on the security of

blockchain systems. Future Generation Computer Systems (2017), 1–13.

[100] Matevž Pustišek and Andrej Kos. 2018. Approaches to Front-End IoT Application Development for the

Ethereum Blockchain. Procedia Computer Science 129, (2018), 410–419.

[101] Ioannis Chatzigiannakis, Apostolos Pyrgelis, Paul G. Spirakis, and Yannis C. Stamatiou. 2011. Elliptic Curve

Based Zero Knowledge Proofs and their Applicability on Resource Constrained Devices. In 2011 IEEE

Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, 715–720.

[102] Jan Henrik Ziegeldorf, Fred Grossmann, Martin Henze, Nicolas Inden, and Klaus Wehrle. 2015. CoinParty:

Secure Multi-Party Mixing of Bitcoins. In 5th ACM Conference on Data and Application Security and

Privacy (CODASPY ’15), 75–86.

[103] Micha R. Hoffman. 2018. Can Blockchains and Linked Data Advance Taxation. In Companion of the The

Web Conference 2018 on The Web Conference 2018 (WWW ’18), 1179–1182.

[104] Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf, and Srdjan Capkun.

2016. On the Security and Performance of Proof of Work Blockchains. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security (CCS ’16), 3–16.

[105] Jega Anish Dev. 2014. Bitcoin mining acceleration and performance quantification. In 2014 IEEE 27th

Canadian Conference on Electrical and Computer Engineering, 1–6.

[106] Florian Tschorsch and Bjorn Scheuermann. 2016. Bitcoin and Beyond: A Technical Survey on Decentralized

Digital Currencies. IEEE Communications Surveys & Tutorials 18, 3 (2016), 2084–2123.

[107] Du Mingxiao, Ma Xiaofeng, Zhe Zhe, Wang Xiangwei, and Chen Qijun. 2017. A review on consensus

algorithm of blockchain. In 2017 IEEE International Conference on Systems, Man, and Cybernetics, 2567–

2572.

[108] Karim Jabbar and Pernille Bjørn. 2018. Infrastructural Grind: Introducing Blockchain Technology in the

Shipping Domain. In 2018 ACM Conference on Supporting Groupwork (GROUP ’18), 297–308.

[109] Tim Swanson. 2015. Consensus-as-a-service: a brief report on the emergence of permissioned, distributed

ledger systems. Retrieved January 14, 2019 from https://www.ofnumbers.com/wp-

content/uploads/2015/04/Permissioned-distributed-ledgers.pdf

[110] Stefano De Angelis, Leonardo Aniello, Roberto Baldoni, Federico Lombardi, Andrea Margheri, and

Vladimiro Sassone. 2018. PBFT vs proof-of-authority: applying the CAP theorem to permissioned

blockchain. Retrieved from https://eprints.soton.ac.uk/415083/

[111] Harish Sukhwani, José M. Martínez, Xiaolin Chang, Kishor S. Trivedi, and Andy Rindos. 2017. Performance

Modeling of PBFT Consensus Process for Permissioned Blockchain Network (Hyperledger Fabric). In 2017

IEEE 36th Symposium on Reliable Distributed Systems, 253–255.

[112] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The Honey Badger of BFT

Protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security

(CCS ’16), 31–42.

[113] Dvora Dolev and H. R. Strong. 1982. Distributed Commit with Bounded Waiting. Retrieved January 2, 2019

from https://www.cs.huji.ac.il/~dolev/pubs/dist-commit.pdf

[114] Rafael Pass and Elaine Shi. 2017. Rethinking Large-Scale Consensus. In 2017 IEEE 30th Computer Security

Foundations Symposium, 115–129.

[115] Seth Gilbert and Nancy Lynch. 2002. Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. ACM SIGACT News 33, 2 (June 2002), 51.

34

[116] Christian Decker and Roger Wattenhofer. 2013. Information propagation in the Bitcoin network. In IEEE

P2P 2013 Proceedings, 1–10.

[117] Artem Barger, Yacov Manevich, Benjamin Mandler, Vita Bortnikov, Gennady Laventman, and Gregory

Chockler. 2017. Scalable Communication Middleware for Permissioned Distributed Ledgers. In Proceedings

of the 10th ACM International Systems and Storage Conference (SYSTOR ’17), 23:1.

[118] Frank Hofmann, Simone Wurster, Eyal Ron, and Moritz Böhmecke-Schwafert. 2017. The immutability

concept of blockchains and benefits of early standardization. In ITU Kaleidoscope: Challenges for a Data-

Driven Society, 1–8.

[119] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone Protocol: Analysis and

Applications. In Advances in Cryptology - EUROCRYPT 2015, 281–310.

[120] ISO. 1989. Information processing systems — Open Systems Interconnection — Basic Reference Model —

Part 2: Security Architecture.

[121] Heiko Koziolek. 2011. Sustainability evaluation of software architectures: a systematic review. In

Proceedings of the joint ACM SIGSOFT conference - QoSA and ACM SIGSOFT symposium - ISARCS on

Quality of software architectures - QoSA and architecting critical systems - ISARCS - QoSA-ISARCS ’11, 3.

[122] Jesse Yli-Huumo, Deokyoon Ko, Sujin Choi, Sooyong Park, and Kari Smolander. 2016. Where Is Current

Research on Blockchain Technology? PLOS ONE 11, 10 (October 2016), 1–27.

[123] Alin Tomescu and Srinivas Devadas. 2017. Catena: Efficient Non-equivocation via Bitcoin. In 2017 IEEE

Symposium on Security and Privacy, 393–409.

[124] Nitesh Emmadi and Harika Narumanchi. 2017. Reinforcing Immutability of Permissioned Blockchains with

Keyless Signatures’ Infrastructure. 1–6.

[125] Adam Back. 1997. A partial hash collision based postage scheme. Retrieved December 29, 2018 from

http://www.hashcash.org/papers/announce.txt

[126] Lukas Malina, Jan Hajny, Radek Fujdiak, and Jiri Hosek. 2016. On perspective of security and privacy-

preserving solutions in the internet of things. Computer Networks 102, (June 2016), 83–95.

[127] Djamel Eddine Kouicem, Abdelmadjid Bouabdallah, and Hicham Lakhlef. 2018. Internet of things security:

A top-down survey. Computer Networks 141, (2018), 199–221.

[128] Daniel Abadi. 2012. Consistency Tradeoffs in Modern Distributed Database System Design: CAP is Only

Part of the Story. Computer 45, 2 (February 2012), 37–42.

[129] The Cryptocurrency Consultant. 2019. Ethereum 2.0 - Consensys Publishes Roadmap To Serenity. Medium.

Retrieved December 10, 2019 from https://medium.com/altcoin-magazine/ethereum-2-0-consensys-

publishes-roadmap-to-serenity-e1ce76fa34f2

[130] Qi Feng, Debiao He, Sherali Zeadally, Muhammad Khurram Khan, and Neeraj Kumar. 2019. A survey on

privacy protection in blockchain system. Journal of Network and Computer Applications 126, (2019), 45–

58.

[131] Nicolas van Saberhagen. 2013. CryptoNote v 2.0. Retrieved May 16, 2019 from

https://cryptonote.org/whitepaper.pdf

[132] Nicolas van Saberhagen. 2013. CryptoNote v 2.0. Retrieved May 2, 2019 from

https://whitepaperdatabase.com/wp-content/uploads/2017/09/Monero-whitepaper.pdf

[133] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat Srivastava, Kyle Hogan,

Jason Hennessey, Andrew Miller, Arvind Narayanan, and Nicolas Christin. 2018. An Empirical Analysis of

Traceability in the Monero Blockchain. Proceedings on Privacy Enhancing Technologies 2018, 3 (2018).

[134] The ZILLIQA Team. 2017. The ZILLIQA Technical Whitepaper. Retrieved September 16, 2019 from

https://docs.zilliqa.com/whitepaper.pdf

[135] Jack Lu, Boris Yang, Zane Liang, Ying Zhang, Demmon Shi, Eric Swartz, and Lizzie Lu. 2017. Wanchain.

Retrieved from https://wanchain.org/files/Wanchain-Whitepaper-EN-version.pdf

[136] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and Beng Chin Ooi. 2018.

Untangling Blockchain: A Data Processing View of Blockchain Systems. IEEE Transactions on Knowledge

and Data Engineering 30, 7 (2018), 1–20.

[137] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek Saxena. 2016. A

Secure Sharding Protocol for Open Blockchains. In ACM SIGSAC Conference on Computer and

Communications Security, 17–30.

[138] seele. 2018. seele Whitepaper. Retrieved May 1, 2019 from

https://web.archive.org/web/20190505151438/http://seele.hk.ufileos.com/Seele_White_Paper_English_v3.

1.pdf

[139] Cindy Compert, Maurizio Luinetti, and Bertrand Portier. 2018. Blockchain and GDPR-How blockchain

could address five areas associated with GDPR compliance.

[140] Ashiq Anjum, Manu Sporny, and Alan Sill. 2017. Blockchain Standards for Compliance and Trust. IEEE

Cloud Computing 4, 4 (July 2017), 84–90.

35

[141] Josh Swihart, Benjamin Winston, and Sean Bowe. 2019. Zcash Counterfeiting Vulnerability Successfully

Remediated. Retrieved November 20, 2019 from

https://web.archive.org/web/20190602072128/https://electriccoin.co/blog/zcash-counterfeiting-

vulnerability-successfully-remediated/

[142] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of distributed consensus

with one faulty process. Journal of the ACM 32, 2 (April 1985), 374–382.

[143] L. Lamport and M. Massa. 2004. Cheap Paxos. In International Conference on Dependable Systems and

Networks, 2004, 307–314.

[144] Diego Ongaro and John Ousterhout. 2016. In Search of an Understandable Consensus Algorithm (Extended

Version). Retrieved July 20, 2018 from https://raft.github.io/raft.pdf

[145] Vitalik Buterin. 2016. Chain Interoperability [white paper]. Retrieved from http://www.r3cev.com/s/Chain-

Interoperability-8g6f.pdf

[146] Hai Jin, Jiang Xiao, and Xiaohai Dai (Eds.). 2018. Towards a Novel Architecture for Enabling

Interoperability amongst Multiple Blockchains. In 2018 IEEE 38th International Conference on Distributed

Computing Systems.

[147] Claudio Lima. 2018. Developing Open and Interoperable DLT/Blockchain Standards. Computer 51, 11

(November 2018), 106–111.

[148] Shijun Liu, Bedir Tekinerdogan, Mikio Aoyama, Liang-Jie Zhang, Liping Deng, Huan Chen, and Jing Zeng

(Eds.). 2018. Research on Cross-Chain Technology Based on Sidechain and Hash-Locking. Retrieved from

https://link.springer.com/content/pdf/10.1007%2F978-3-319-94340-4.pdf

[149] Tobias Dehling, Sebastian Lins, and Ali Sunyaev. 2019. Security of critical information infrastructures. In

Information Technology for Peace and Security: IT Applications and Infrastructures in Conflicts, Crises,

War, and Peace, ChristianEditor Reuter (ed.). 319–339.

[150] Diego Marmsoler and Leo Eichhorn. 2018. Simulation-Based Analysis of Blockchain Architectures.

Unpublished (2018). Retrieved March 19, 2019 from http://rgdoi.net/10.13140/RG.2.2.19898.44481

[151] Manuel Zander, Tom Waite, and Dominik Harz. 2018. DAGsim: Simulation of DAG-based distributed

ledger protocols. ACM SIGMETRICS Performance Evaluation Review 46, 3 (December 2018), 118–121.

[152] Xiwei Xu, Cesare Pautasso, Liming Zhu, Vincent Gramoli, Alexander Ponomarev, An Binh Tran, and

Shiping Chen Chen. 2016. The Blockchain as a Software Connector. In 2016 13th Working IEEE/IFIP

Conference on Software Architecture, 182–191.

